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ABSTRACT
Vermicompost, as less energy demanding organic fertilizer, has been of utmost choice for agronomists for decades. 

Studies revealed numerous beneficial impacts of vermicompost from eco-friendly waste degradation to minimized 

greenhouse gases emission. Worms, the catalysts of the vermicompost biomass, are also of economic interests for the 

producers. The product of such process, is stabilized, nutrient-rich, pollutant-free, and compatible and bank of energy 

for crops. In this study, a comprehensive view is applied to better illustrate the advantageous and drawbacks of 

vermicompost so that agriculturalists could make a more informed decision when using such manure. Environmental 

and economic facets are of great significance as the objective of conducting smart agriculture should be highlighted. 

Thus, this study aims to provide a throughout references for the farmers to utilize when apply vermicomposting. 
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INTRODUCTION
As a sustainable, eco-friendly, and non-thermophilic approach in 
the agriculture industry, vermicompost is a bio-oxidation 
decomposition process that involves organic matter stabilization 
and nutrients development in physical, nutritional, and 
biochemical terms using epigeic earthworms and 
microorganisms [1-7]. Benefits it provides to soil are nutrient 
cycling improvement, enhancement of water retention capacity, 
and developed microbial activity [8-10]. Epigeic earthworms 
cause substrates breakdown and are the most appropriate and 
efficient for vermicompost production as they live in organic 
horizons and utilize decayed organic matter [11,12]. Eisenia 
fetida is the widely used epigeic earthworm in vermicomposting 
process, having a wide temperature resiliency high fecundity, and 
the ability to live in the wide spectrum of organic wastes [8,13].

Vermicompost-applied soils are better in micro and macro-
spaces, particles, Electrical Conductivity (EC), pH, nutrients, 
profile structure, hydraulic conductivity, and erosion resistance 
[14-17]. Vermicast, the product of the earthworms when they mix 
inorganic soil materials and organic matters in their guts, 
contains beneficial enzymes and hormones for crops and soil 
[18,19]. Casts are normally present in the 0-20 cm of the surface 
layer containing more water-stable aggregates than surroundings 
ones [20]. Presence of nitrogen fixing and phosphorus-

solubilizing bacteria, in vermicast stimulates the productivity, 
development, growth of crops [21-26]. Several studies found the 
salutary effects of the vermicompost on crop productivity such 
as: wheat, peppermint, tomatoes, capsicum, and garlic. In 
addition, indirect benefits found include, pests and diseases 
control, parasitic nematodes suppression [27-33].

LITERATURE REVIEW

Vermicompost impacts on plants growth

Organic matter is a valuable source of nutrients that plants can 
easily access, and adding it to the soil can promote thriving 
microbial populations and activities. This leads to higher values 
of biomass carbon, basal respiration, the ratio of biomass carbon 
to total organic carbon, and the metabolic quotient (qCO2). The 
inclusion of organic matter has also resulted in enhanced soil 
quality, leading to increased crop yields. Studies have 
documented significant yield improvements by using mulches 
made from coffee husks, as well as increased productivity 
through the application of animal manures and hay residues. 
According to Edwards and Burrows, vermicomposts were found 
to enhance the emergence of ornamental seedlings compared to 
control commercial plant growth media. Various test plants, 
including pea, lettuce, wheat, cabbage, tomato, and radish,
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increased root lengths, lateral root numbers, and internode 
lengths of seedlings. In a rooting experiment, vermicomposts 
were found to enhance the establishment of vanilla (Vanilla 
planifolia) cuttings better than other growth media such as coir 
pith and sand mixtures. Similar growth responses were observed 
in cloves (Syzygium aromaticum) and black peppers (Piper nigrum) 
sown in 1:1 mixtures of vermicompost and soil. Black pepper 
cuttings raised in vermicomposts exhibited significantly greater 
height and leaf count compared to those grown in commercial 
potting mixtures, while cloves grown in vermicompost mixtures 
displayed taller plant heights, more branches, and longer 
taproots. The study reported enhanced growth and dry matter 
yield of cardamom (Electtaria cardamomum) seedlings in 
vermicomposted forest litter compared to other growth media 
tested. Vermicomposts produced from coir dust were found to 
increase onion yields (Allium cepa).

Economic aspects of composting and 
vermicomposting processes

From economic point of view, total cost of vermicompost 
application from the workforce to fertilizer is cheaper compared 
to chemical fertilizers [34]. Compost and vermicompost are well-
known in terms of economical sustainability, as they, especially 
composting process involves low technical and capital 
complexity and input [9,35]. Researchers reported that a savings 
of € 19.56 can happen per ton of organic waste if composting 
used to manage wine industries waste compared to external 
management [35]. Galgani P, et al., also mentioned that 
composting was economically viable without receiving any 
subsidies in Bangladesh and Indonesia [9]. Carbon markets is 
also another factor in economic viability of the composting 
process [12]. Composting normally involves lower Greenhouse 
Gases (GHGs) emissivity but balances are not taken into 
account for nutrients recycling for compost production from 
organic waste [12]. Studies show that no robust analysis were 
attempted so far addressing the economic feasibility of 
combined compost-vermicompost system but the total cost-
effectivity and annual revenue of the integrated system can 
hypothetically be higher than the composting technology alone 
[12].

Global   vermicast/compost   production   trend  and
their utility

As a growing waste-free industry which contains environmentally 
safe by-products and final products, vermiculture; huge 
production of earthworms in waste materials, firstly started in 
Holland in 1970, then started growing in Israel, Brazil, Canada, 
France, England, Korea, USA, Italy, Philippines, Thailand, 
China, Japan, and Australia [3,8]. American Earthworms 
Technology company produced approximately 500 tons of 
vermicompost per month in 1978-79 [8]. Collier, Hartenstein 
and Bisesi reported sewage sludge treatment through 
vermiculture in USA. in 1985–87 USA exported 3000 tons of 
earthworms to Japan for cellulose waste degradation [36,37]. 
Edwards also mentioned municipal sludge sawdust, rice straw 
and paper waste utilization for vermicomposting producing 2–3 
thousand  tons  of vermicompost per month [38]. Sinha reported
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exhibited improved growth when grown in vermicompost-
supplemented mixtures. Additionally, ornamental shrubs such 
as Eleagnus pungens, Cotoneaster conspicua, Pyracantha, Viburnum 
bodnantense, Chaemaecyparis lawsonia, Cupressocyparis leylandii and 
Juniperus communis thrived better in vermicompost-supplemented 
mixtures when transplanted into larger pots or grown outdoors. 
Chrysanthemums, salvias, and petunias also flowered earlier in 
vermicomposts compared to commercial planting media. Even 
when substituting just 5% of a 50:50 mixture of pig and cattle 
manure vermicomposts into various levels of commercial plant 
growth medium, plants exhibited better growth. Similar positive 
growth trends were observed in greenhouse pot trials by using 
vermicompost and sand mixtures ranging from 0% to 100%. 
Although higher concentrations of vermicompost led to reduced 
radish germination, radish harvest weights increased 
proportionally with vermicompost application rates, with yields 
in 100% vermicompost being up to ten times greater than those 
in 10% vermicompost. The Soil Ecology Laboratory at The 
Ohio State University consistently found that a wide range of 
crops exhibited accelerated germination when treated with 
vermicomposts. Initially, vermicompost applications inhibited 
germination, but subsequent weekly applications of diluted 
extracts improved plant growth and increased radish yields by up 
to 20%. Wilson and Carlile reported that tomatoes, lettuces, 
and peppers exhibited optimal growth rates at substitution rates 
of 8-10%, 8%, and 6%, respectively, using a mixture of duck 
waste vermicompost and peat. However, higher substitution 
rates led to growth inhibition attributed to increased electrical 
conductivity (salt content) and excessive nutrient levels. Subler, 
et al., observed increased plant growth in commercial media 
(Metro-Mix MM360) when vermicomposts were substituted 
instead of traditional composts derived from biosolids and yard 
waste. In Scott's U.K. study involving hardy nursery stocks of 
Juniperus, Chamaecyparis, and Pyracantha, substituting 20-50%
vermicomposts from cattle manure, pig manure, and duck waste 
into Metro-Mix MM360, along with regular nutrient 
application, resulted in better growth compared to plants grown 
in a peat-sand mixture. In the second year of the experiment, 
responses varied among the test crops, but the addition of 25%of 
all three types of animal waste, along with a controlled-release 
fertilizer (Osmocote 18:11:10), promoted increased growth of 
Juniperus sabina tamariscifolia.

Handreck conducted research to examine the effects of various 
vermicomposts derived from cow manure, sheep manure, 
poultry manure, goat manure (mixed with carpet underfelt, lawn 
clippings, cardboard, and domestic waste), kitchen scraps, 
cardboard (mixed with wheat, maize, meat, lucerne and linseed 
meals, rice pollard, and oat hulls), and pig wastes on plant 
growth. The vermicomposts were mixed with Pinus radiata bark 
and quartz sand in the growth media, with each vermicompost 
accounting for 30% of the mixture. Handreck found that all of 
these mixtures increased the dry weights of stocks (Mathiola 
incana) compared to the control group that received no 
vermicompost. Similar results were reported in the germination 
of tomatoes and peppers grown in vermicomposts mixed with a 
commercial peat/sand planting medium. Chan and Griffiths 
reported stimulating effects of pig manure vermicomposts on 
the growth of soybeans (Glycine max), particularly in terms of
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worms and by enhancing microbial mediated nitrogen 
mineralization [60]. Earthworms’ phosphatases and P-
solubilizing microorganisms result in phosphorous 
mineralization and phosphor availability [11,61]. Jemal and 
Abede mentioned that total nitrogen content happened in 
Ambo combined with stevia leaf (2%) and high available 
phosphorous in Meskan+fresh foods (31.565 ppm) [62]. Van 
Groenigen, et al., mentioned 83% and 240%increase in P and 
N availability as 40 to 48% total P, N, and organic C 
found in casts compared to bulk soils [63].

The C/N ratio is an accepted measure of compost maturity [64]. 
Biruntha, et al., reported that vermi-amended compost had a 
lower C/N and C/P ratio compared to that of unamended ones 
ranging from (11 to 28%), and (30 to 43%), respectively 
indicating the significance of total organic carbon in the initial 
C/N. In line with that, Zhi-wei, et al., observed 59 to 72%
decrease in C/N in rice straw and kitchen waste vermicompost 
[65,66]. Boruah, et al., reported 91% reduction in C/N ratio in 
citronella bagasse and paper mill sludge vermicomposting [67]. 
Soobhany, et al., also found 41.5–48% reduction in C/N ratio 
in solid wastes vermicomposting. This variation range in C/N 
ration can be attributed to earthworms' activity and reproduction 
rate due to food priority and appropriate C/N ratio in the initial 
feedstock. C/N is an indicator for the organic matter 
mineralization rate and compost maturity [65,68]. CO2 emission, 
adding nitrogenous worms' excretion, and earthworm's 
bioactivity can improve the C/N reduction in vermicompost 
[69,70]. Ndegwa and Thompson recommended the C/N ratio of 
25 for optimization of the interaction between earthworms and 
microbes as it provides sufficient available energy for during the 
bio-conversion process [71]. Gunadi and Edwards wrote that 
paper could better adsorb moisture and was a better bedding or 
bulking material as E. fetida could not survive in fresh cattle 
solids, fresh young pig solids, fruit wastes and vegetable wastes 
[72]. Warman and AngLopez observed that Kitchen Waste
+Paper (KPW) was a better material for earthworms' fecundity 
than Kitchen Wastes+Yard (KYW) may be due to the higher 
nutritional content of the kitchen waste+paper casts [73]. They 
also found KPW cast darker and finer rather than KYW which 
could be attributed to castings redigestion and oxidation in the 
earthworm gut. The leaves and paper’s fibers were also noticed in 
KPW and KYW as they need long time to decompose due to 
cellulose which can explain greater earthworms' growth in KPW 
[73].

Microbial communities involved in vermicomposting

Vermicompost is an organic biofertilizer which is studied not 
only for its chemical and nutritional qualities but also for its 
biological features in terms of microbial inoculums. Few studies 
have focused on the microbial succession during 
vermicomposting. Thus, the need for a throughout research is 
sensed for interpretation and characterization of the microbial 
community composition [74]. The active phase of composting is 
the thermophilic stage in which bacterial succession happens 
[75,76]. Disease suppression activity of thermophilic compost 
reported in several researches on different phytopathogens viz.,
Rhizoctonia,  Phytopthora,  Plasmidiophora  brassicae  and Gaeumannomyces
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Bangalore and Pune vermicompsting sites with 100ton per day 
capacity. Bhawalkar Earthworm Research Institute (BERI), Pune 
is the biggest earthworm-based vermiculturing institute in India 
[3,39]. Senapati, Gunathilagraj and Ramesh reported treatment 
of coir waste, sericultural wastes and cellulosic wastes by 
earthworms [40,41].

Does feedstock affect vermicomposting

Numerous feedstocks can be used for feeding vermicompost 
from pig manure, oat straw to kitchen waste, cow dung, and 
industrial sludge with pH range from 5-8, and 40-55% of 
moisture content [7,12,22,42]. Earthworms' growth monitored 
in several studies, like animal manure, plant residues, and 
municipal wastewater but little is known about the quality of the 
feedstock on the earthworms [43-46]. Butt found no adverse 
effect on earthworms in mill sludge treated vermicompost. 
Elvira, et al., cited that solid paper-mill sludge mixed with 
sewage sludge in the 3:2 ratio resulted in the highest growth rate 
and the lowest mortality of E. Andrei [47,48]. In contrast, 
Papermill sludge mixed with pig slurry showed a high mortality 
rate which can be due to changes in the environmental factors 
[48]. Elvira, et al., mentioned that earthworm's reproduction 
and total biomass ascended between 22 and 36-fold, 2.2 and 3.9-
fold, in mixed paper mill sludge and cattle manure, respectively. 
The vermicomposts were nitrogen and phosphorous-rich with 
low toxicity and high stability [48]. In addition, Karmegam, et 
al., found that green manure+cowdung substantially improved 
the reproduction and growth of earthworms [4].

According to Aslam, et al., for paper wastes, cow dung, and rice 
straw during the vermicomposting process, Nitrogen (N), 
available Phosphorus (P), available Potassium (K), Zinc (Zn), and 
Iron (Fe) concentrations ranged from (0.02–0.30 percent),
(9.10–23.21 ppm), (127.00–1425.00 ppm), (0.41–1.06 ppm), and 
(1.83–4.21 ppm), respectively. In agreement with that, Chauhan 
and PC conducted a study on toxic weeds vermicomposting and 
observed a high increase in nitrogen, potassium, phosphorus 
and a significant decrease in organic carbon, C/N, C/P ratio in 
the Eisenia fetida inoculated experiment. In the study 
conducted by Chen, et al., decrease in C/N and C/P was also 
reported in vermiconversion of medicinal herbal residues 
[49,50,51]. In contrast, Bansal and Kapoor mentioned that 
earthworms had no effect on the total P, K and Copper (Cu) 
content of compost [44]. However, they found more Zn in cattle 
dung compost with earthworms compared to earthworms-
free compost. Esmaeili, et al., reported a significant 
reduction in C/N and total organic carbon by 69% and 37% 
in pistachio waste treatment which is coincided with other 
studies [52-55]. Such reduction is attributed to the 
coupled activity of microorganisms and earthworms that led 
to the conversion of organic materials to carbon dioxide 
[56,57]. This mutual activity is defined as release of mucus and 
enzymes by earthworms that accelerates the microorganisms’ 
activity, and release of extracellular enzymes into the 
earthworm’s intestine by microorganisms [58]. Nutrient 
contents of the feedstock mainly affect the nutrient release of 
the vermicompost [59]. Earthworms have an influential role 
in increasing and improving the nitrogen contents of the 
waste by adding nitrogen-rich mucus, decaying tissues of dead 
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quantity of bioavailable Chromium (Cr) and Pb varied based on 
vermicompost application ratio [110]. These discrepancies 
indicate that despite having a significant adsorption capacity for 
potential heavy metals Jordão, et al., further investigation 
required for fully understanding of the effects [111].

Vermicompost effect on GHG emission

Emission of GHGs has always been one of the major concerns in 
vermitechnology since it reduces the agricultural values of the 
products along with polluting atmosphere [17,112,113]. 
Amongst gases, N2O and CH4 are the significant contributors to 
the global warming Awasthi, et al., as their potentiality are 298 
and 25 times higher than CO2 over a 100-year period [114]. 
Hence, deciphering the behavior of vermicomposting in 
generating GHGs emission is significant. Contributing factors to 
GHG emission in vermicomposting are temperature, moisture 
quantity, aeration condition, additives, bulking agents, pile 
scales, and C/N ratio [17,112,115-119]. Studies report 
contradictory results on the earthworm addition to compost. 
Wang, et al., and Nigussie, et al., found positive effects of the 
earthworms on GHG emissivity in animal manure-bed while 
others mentioned that earthworm-induced GHG emission 
increased compared to traditional composting [120-122]. Since 
they influence physico-chemical properties of the soil [17,123]. 
According to Friedrich and Trois biodegradation process that 
produces CO2 and agricultural machinery used during 
vermicomposting are the reasons behind GHG emissivity [124]. 
CO2 emission is indicative of the mineralization and degradation 
of the organic matter [125]. In line with that Hao, et al., Tsutsui, 
et al., and Luo, et al., cited that organic matter decomposition 
consumes O2 and release CO2. Some studies mentioned the 
impact of aeration and turning in mitigating GHG emission 
[126-128]. For instance, Chowdhury, et al., reported low aeration 
reduced GHG emission while Wang, et al., reported that 
intermittent aeration could better decrease GHG emission rather 
than a continuous one. Some studies reported the increased 
nitrate and CO2 emission and decreased CH4 emission which is 
linked to aerobic condition maintained by burrowing activities of 
earthworms while more moisture content generate more CH4 
anaerobic condition led to more GHGs emissivity [104,129-131]. 
Nigussie, et al., reported a reduction in CH4 and N2O emission 
during vermicomposting compared to composting by 32% and 
40% respectively, while the moisture content was high but the 
reduction of GHGs was 16% and 23% in low moisture 
condition [132]. Jiang, et al., indicated the effectivity of 
enhanced air exchange on reduction of GHG emission. Luo, et 
al., studies that turning and covering pig manure with mature 
compost could have positive effect on GHG emission [128,133]. 
Between aeration and turning, a study conducted by Friedrich 
and Trois represented that aeration might be better than turning 
as turned windrow composting released 8.14% higher GHGs 
than aerated dome composting [124]. Researchers conducted 
mentioned that biochar mature compost, and C-bulking agent, 
such as woodchips, sawdust or crop residues could tune the 
condition of waste mixture and decline the GHGs emission such 
as CO2 if mixed well with manure [128,129,134]. Thus, a robust 
analysis and a deep investigation are required experimenting the 
factors  and  conditions in understating the definitive  influences 
of the vermicomposting on GHGs emission. 
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graminis and Fusarium [77-83]. Organic amendments 
improve the microbial population and diversity which could 
be the reason for disease suppression [84]. Pertinent to 
bacterial diversity enhancement Kolbe, et al., provided a 
detailed characterization of bacterial succession during 
vermicomposting of white grape marc and found a 
significant increment in bacterial diversity and community 
composition [85]. Such traits are also accompanied by increase 
in metabolic capacity and specific metabolic processes 
comprising cellulose metabolism, plant hormone synthesis, and 
antibiotic synthesis. In agreement with that Domínguez, et al., 
mentioned the beneficial impacts of vermicomposting of Scotch 
broom on bacterial community composition. Interestingly, 
Gómez-Brandón, et al., found a reduction in microbial biomass 
and diversity but an increase in microbial total activity. Several 
studies highlighted the significance of passage of the material 
through the earthworm gut as it favors the existence of smaller 
but metabolically more active microbial population [86-88]. In 
addition, Mainoo, et al., found a significant reduction both in 
E.coli plus Salmonella (31 to 70%) and Aspergillus (78 to 88%) 
loads during vermicompost while in the earthworm-free plot, 
there was a decline of 75%, and 16% in E. coli plus Salmonella, 
and Aspergillus, respectively during the same period in the 
pineapple waste-bedded [89].

Vermicomposts effect on heavy metals

Presence of the heavy metals and metalloids in soils pose serious 
threats to the food chain and human health [90]. Studies report 
that composting and maturity time of organic residuals does 
have positive effects on heavy metals behavior like water 
solubility and chemical extractabilities, consequently estimating 
to have low heavy metal leaching [91-96]. García, et al., these 
characteristics are attributed to formation of metal-humus 
complex [91]. Khan conducted a study on how biochar inclusion 
to vermiconversion can hinder the heavy metal movement 
during preincubation [97]. This is in agreement with the 
findings of the Li, et al., and Awasthi, et al., for the mobility of 
Zn, Cu and Ni, Lead (Pb) [98,99]. Park, et al., indicated a sharp 
reduction in the heavy metal build-up in Indian mustard
+biochar bed [100]. Also, reduction of Zn, Pb, Fe, Cu was 
observed in sewage sludge and sugar cane mixture [101]. This is 
in line with Gogoi, et al., reported vermicompost efficacy in Zn 
removal rather than Cu in a 1:1 ratio (cowdung+sludge) [102]. 
According to Jain, et al., this happens due to microflora 
detoxification capability which are in earthworm's intestine. 
Khan, MB., reports biochar coupled with Eisenia fetida can be 
considered a significant treatment in preincubation-
vermicomposting of biosolids [97,103]. Also, Wang, et al., found 
that the accumulation of heavy metals happened in earthworms’ 
tissues (145 mg/kg, 64.8 mg/kg for Zn and Pb total in a 
treatment of (90% sewage sludge, 7% fly ash, 3% phosphoric 
rock and 90% sewage sludge, 3% fly ash, 7% phosphoric rock) 
respectively [104]. However, the results are conflicting in this 
regard. For example, Abbaspour and Golchin reported low 
transformation effect of vermicompost on Pb, Cd, Zn and Cu in 
an alkaline soil [105]. Chand, et al. mentioned a positive 
relationship between vermicompost and potential heavy metal 
accumulation by crops [106-109]. Hoehne, et al., showed that
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activity [149]. Cao, et al., the more earthworms population 
increase, the more nutrient quantity in the final product would 
be [150]. It can also be noted that the earthworms and carbon 
stabilization relation is positively correlated. Total organic carbon 
indicates organic carbon absorption and CO2 emission during 
the vermiconversion process [151].

DISCUSSION
Literature reviews largely revealed the potentiality of the 
vermicompost in ensuring food quality, remediating ground 
water pollution, and enhancing agricultural productivity. Pacing 
towards a sustainable agriculture, vermicompost can benefit the 
consumers, producer, and the environment [151]. 
Vermicompost, known as “Black Gold” fulfills the concept of 
“zero waste” by recycling a large deal of wastes from sewage 
sludge to food waste [151-153]. Green Revolution had many side 
effects including increase in chemical fertilization and pesticide 
utilization for fostering crop yields which adversely affected soil 
health and productivity [154]. Following the approach of three 
Rs (reduce, reuse, recycle), vermicompost is significantly linked 
to the circular economy through generation of energy from 
wastes [70]. Circular economy is the long-term promising 
solution to meet the sustainable development pillars: economic, 
environment, social [151]. It addresses the economic aspects as it 
shrinks the costs of the pollution control. The environmental 
dimension is meet through minimization of waste and 
greenhouse gases emission [155]. New businesses provide new 
job opportunities for the society as well [151]. It can also tackle 
the soil fertility and food shortage problems [156]. Hence, the 
goal of sustainability in agriculture can be achieved once 
vermicompost potentials are deeply realized in terms of waste 
disposal management, contaminant remediation, and job offers 
provision.

Vermicompost, as a slow-release fertilizer, ensures agricultural 
sustainability and has a synergistic influence on crops [151]. It 
provides vital nutrients such as nitrates, solubilized potassium, 
magnesium, phosphorous, calcium to crops [16,84,157]. It also 
offers more microsites to microbes for nutrient retention 
through increased surface area [158,159]. It increases the 
production of plant growth hormones if applied with humic 
substances [160]. Several studies mentioned that the application 
of vermicomposting after composting process caused a decrease 
in GHGs emissivity, less heavy-metal contaminated agricultural 
products, more nutrient accessibility, and a greater deal of 
microbes [120,161-163].

CONCLUSION
While a great deal of research has shown the beneficial impacts 
of the vermicompost on soil nutrient efficiency, particle 
cohesion, and development of the soil profile, results for the 
greenhouse gases emissivity and environmental facets are 
contradictory and demand more subsequent and site-specific 
research. This review aimed to gather numerous studies and put 
them together to provide a detailed references for  agriculturalists
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Soil organic matter and carbon characteristics 
affected by vermicompost

Stable compost is a state in which Organic Matter (OM) 
decomposition is low without any heat produced [132]. 
Instability of the compost leads to a reduction in plant growth as 
it comprises toxic compounds, causes oxygen depletion in the 
root zone, and compels osmotic stress [135]. Several indices have 
been proposed as compost stability indicators such as CO2 
evaluation, lack of heat development, C/N ratio <12 and NH4+-
N: NO3--N ratio <0.16 [136,137]. The quality and quantity of the 
Dissolved Organic Carbon (DOC) at threshold value of 4 g/kg is 
considered as an additional compost stability indicator 
[118,121,136]. Through ingestion of the substrates and 
governing the microbial communities, earthworms can affect the 
DOC. Still, little is known about the effects of the earthworms 
on the composition of DOC during the vermicomposting 
process [121]. Nigussie, et al., found that a longer pre-
composting period causes a lower DOC content since it has 
easily degradable compounds. Consequently, C mineralization 
ascends. DOC in compost can affect microbial activities and C 
mineralization when soil is applied [121,138]. Composts with 
DOC content lower than 4 g kg-1 dry matter are considered 
more stable than non-earthworms treated ones presumably 
because they improve the decomposition process by interacting 
with microorganisms [112,132]. Soil carbon sequestration 
through earthworms’ activity is defined as the balance of the OM 
mineralization and stabilization [139,140]. Wu, et al., stated that 
earthworms can increase soil organic carbon rates through the 
replacement of the old SOM with newly added straw carbon 
[140]. Lubbers, et al., mentioned that earthworms spurred 
organic matter mineralization through microbial respiration 
enhancement [141]. They can also accelerate carbon stabilization 
[140]. Through ingestion of the organic matter, they are mixing 
it with inorganic soil materials, passing through their guts and 
sending it out as casts. Subsequently, nuclei are created for the 
formation of the organo-minerals micro-aggregates and then 
macro-aggregates to protect the soil organic matter [142,143]. 
Furthermore, earthworms can tunnel into the soil, deposit the C 
in deep soil profile and protect the C there [144]. Earthworms 
are able to mobilize labile carbon [145]. They can also develop 
microbial activities toward using more diverse carbon pools 
[146]. Ngo, et al., mentioned that increase of organic carbon 
storage relies on the organic manure characteristics [147]. 
Earthworms lessen carbon storage organic material-amended 
soils. In addition, earthworms’ presence results in organic matter 
protection in soil particles.

Zaitsev, et al., found out that earthworms can alter the microbial 
activity and carbon release from reapplied rice straw by 
stimulating aerobic microorganisms [148]. The optimal density 
of earthworms can be set at 500-600 per m2 for sequestering 
carbon. At higher density, there could be a competition amongst 
earthworms for the resources and stress them. Lower than the 
optimal density, the straw remains unprocessed. In agreement 
with that,  reported  by Ramos, et al., microorganism activity and 
substrate mass (ρ =0.95) and total organic carbon (ρ =0.77) are 
highly  correlated  indicating high carbon quantity and microbial
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and farmers to make a more informed decision when apply
vermicomposting on the farm.
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