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ABSTRACT
Developing Air Traffic Management (ATM) and avionics human-machine framework ideas need real-time 
surveillance of the human operator to enable unique job assessment and system adaptability characteristics. 
To implement these advanced notions, a set of sensors capable of consistently and correctly capturing 
neurophysiological data is required. The scientific verification and performance evaluation of a cardio-respiratory 
sensor with ATM and avionics applications are presented in this research. The processed physiological measures 
from the specified commercial device are validated against clinical-grade equipment. Unlike previous studies 
that just looked at physical effort, this characterization looked at cognitive workload as well, which provides 
some extra hurdles to cardiorespiratory monitoring. The paper also discusses how to quantify ambiguity in the 
cognitive and somatic estimation process based on the ambiguity in the supplied cardio-respiratory measures. 
The sensor validation and uncertainty propagation findings confirm the commercialized cardiorespiratory 
sensor's fundamental compatibility for the planned aircraft application but emphasize the comparatively low 
performance within respiratory measures throughout a purely mental task.

Keywords: Air traffic management; Cardiorespiratory; ECG; Cognitive ergonomics; Fuzzy systems; Mental 
workload; Heart rate

INTRODUCTION
To increase operational efficiency in complicated missions 
involving vast volumes of data in time-critical scenarios, such as 
Air Traffic Management, human operators must collaborate with 
high degrees of automated assistance. Human-Machine Interfaces 
and Interactions (HMI2) that are dynamically adaptable have the 
ability to adjust cognitive burden, allowing for improved autonomy 
within decision support system. Several studies postulated that 
HMI2 adaptation be driven by neurophysiological monitoring. The 
major physiological observables that may be monitored are brain, 
cardiorespiratory, and ocular [1] activity, but research is also focusing 
on facial expression [2,3] and speech pattern analysis [4-7] to assess 
the cognitive states of the human operator. Every physiological 
observable gives a unique view on the monitored human’s physical 
and mental condition, as well as a variable amount of intrusiveness 
and ergonomic influence [8]. Some sensors are quicker but more 
prone with Electro-Magnetic Interference (EMI), whereas others 
are extremely slow but more impervious to noise and disturbances. 
For these vital reasons, there is a lot of interest in different 
neurophysiological observables and related sensor technologies for 
the aircraft industry.

Recent studies [9] have assessed the performance of gaze tracking 
sensors that have shown considerable potential for avionics 
and ATM implementations. Cardiorespiratory sensors have 
become less complicated and have a longer clinical history than 
Electroencephalogram (EEG) and eye tracking. These are also less 
vulnerable to interference, and certain cardiorespiratory monitors 
are far less invasive (and obtrusive) than EEG. As a result, the 
emphasis of this study is on the use of cardio -respiratory sensors 
to provide flexible HMI2 in aerospace. Whereas technology 
of cardiorespiratory sensor has been extensively investigated, 
important publications have solely addressed physical activity [10-
20]. A number of researchers have looked at using cardiorespiratory 
observables to estimate cognitive state in the context of air traffic 
control [21,22]. However, the data quality, which is dependent on 
the actual functioning of the sensors, must be evaluated to provide 
reproducible and compelling results [23]. As a result, for increasingly 
complicated aviation activities, characterizing the efficiency of 
Electrocardiographic sensors by examining the connection of 
cardiorespiratory properties to objective measurements such as 
work performance is critical. ECG sensors were employed in flight 
apps to evaluate the pilot’s mental workload [24-26], however the 
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Figure 1: The CHMI2 systems' top-level structure.

surgical instruments used in these investigations are often not 
suited for real-time applications owing to their invasive nature and 
insufficient support for real-time data exchange. The development 
of new consumer-grade devices on the market, on the other hand, 
holds considerable potential for adaptive HMI2 applications since 
they can monitor cardiorespiratory observables with reasonably 
high precision while overcoming the drawbacks.

Significant aeronautical research focuses on consumer-grade 
known as wearable sensors, whereby a number of studies have 
been published. None of this research included a mental 
assessment regimen, as well as the wearable cardiorespiratory 
tracking technology used in these studies was not used to measure 
mental Workload (MWL) or for aeronautical human factors. 
This absence of pre-experiment characterization and performance 
analysis is especially concerning given the substantial body of 
research involving these sensors within aviation [21-27]. Due to the 
increasing usage of cardiorespiratory tracking in aviation human 
factors analysis, it is critical to study their efficiency in cognitively 
challenging activities.

The purpose of this paper is to discuss the validation and 
performance characterization of commercialized cardiorespiratory 
sensors through monitoring cognitive activities, with an emphasis 
on aerospace applications. The study is a significantly expanded 
version of the preliminary work given in [28]. This research offers a 
way to apply the standard transmission of uncertainty theory using 
a machine learning algorithm, enabling to quantify the ambiguity 
inside the concluding cognitive state estimations, in addition to 
expanding the characterization beyond the solitary cardiac data. 
Because there is a scarcity of experimental literature data, this study 
doesn’t really guarantee to perform a statistically relevant analysis, 
but rather to accomplish a preliminary validation in a mental 
workload configuration and also to propose and illustrate a new 
methodology to risk propagation via neuro-fuzzy inference systems. 
Both of these characteristics are innovative and significant for ATM 
studies across the globe.

Cardiorespiratory sensing in the Cognitive Human-
Machine Interface (CHMI) framework

Several active human factors engineering research [29] are addressing 
the problem of WL spikes within human pilot and ATM operator 
positions, since they are especially dangerous. A fundamental aim 
of these investigations is the creation of HMI2 that not only enables 
the operator to keep a greater awareness of the system’s operations, 
but also avoids cognitive overload and dangerous situations, such 
as attention tunneling or being “out of the loop.” Cognitive HMI2 
(CHMI2) is a new idea with great potential to improve operational 
efficiency and safety optimization, in which a system detects the 
cognitive process of the single operator as well as dynamically 
adjusts HMI2 forms to give real-time assistance [30-31].

The CHMI2 cognitive case estimation methods obtain input 
data out of a pair of wearable and stand-off biosensors as well 
as other aviation systems and information sources and convert 
these operational, physiological, and environmental factors into 
cognitive states utilizing a ML-based classifier that was trained on 
the single operator using a specifically developed pattern. Figure 1 
depicts the top-level CHMI2 system design customized for Human–
Machine Interface (HMI) format, Level of Autonomy (LOA), 
adaptability, and ATM job scheduling that provides a full overview 
of the CHMI2 systems with an emphasis on the recently deployed 

neurophysiological sensor network [8].

Real-time detection of cardiorespiratory indicators is crucial for 
the CHMI2 technology because, among many other reasons, these 
parameters have been found to offer an accurate estimation of 
the subject’s physical or mental exertion level. In addition, they 
have been researched for a long amount of time, thus there is a 
substantial body of literature and the sensing novel innovation is 
established. Both cardiovascular and pulmonary interactions have 
a low temporal responsiveness (slowing around 4 to 6 secs) [32] 
especially in comparison to different physiological signals (eye-based 
variables have a comparatively high temporal responsiveness on the 
order of just milliseconds [33]), leading to inaccuracies throughout 
fusion of the different physiological characteristics, thus a careful 
geometry of stimulation time with physiological changes is also 
required

MATERIALS AND METHODS

The investigated consumer-grade sensors is the Zephyr Bio Harness 
(BH) seen in Figure 2, that is broadly commercially accessible 
and often used for activity tracking (especially of the physical 
type). This gadget, hereafter referred to as a commercial device, 
therefore serves as a useful reference point for comparable wearable 
consumer-grade devices. The BH has become a tiny chest-mounted 
sensor having a 71 g chest strap and an 18 g processing module that 
collects and sends data in real time. It is capable of concurrently 
measuring heart rate, breathing rate, body temperature, posture, 
and tri-axial accelerometry. BH reported 250 Hz frequencies 
of ECG waveform and 18 Hz frequencies of breathing waveform. 
These raw readings are converted into heart rate, and breathing rate 
indicators, which are recorded or streamed based on recognized 
fluctuations or specified intervals, with 1 or 2 Hz being the most 
prevalent options. Literature shows that these sample frequencies 
are appropriate for heart rate, breathing rate, and Heart Rate 
Variability (HRV) indicators, since these are solely characterized as 
a ratio of the peak-to-peak intervals (for example, R to R) inside the 
raw signal, that for adult non-athletic individuals ranges from 0.3-4 
Hz [34-35]. In low usage or static mode, the manufacturer's technical 
literature states that these values may vary by 2 bpm overall heart 
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Where m represents a number of the data points; ST is a data 
measured from the commercial device at (1/min); so the data 
recorded from a healthcare device at (1/min); D is just a difference 
among ST and SO so in (1/min); and μD is an average difference 
among ST and SO in (1/min).

Figure 5 depicts the high-level technique implemented throughout 
this performance analysis of the commercial and the clinical 
devices directly linked to the Personal Computer (PC). As depicted, 
three distinct stages of cardiorespiratory information processing 
are evaluated: the accuracy and the precision of the offline-logged 
metrics, of the real-time streamed data, and of cognitive forecasts 
from neuro-fuzzy inference system, as the cardio-respiratory data is 
used to determine the operator’s cognitive states within estimation 
module. The HR is generated directly from the R to R interval, 
while the BR is obtained from the raw respiratory amplitude. 
Consequently, Department of Mechatronics, Hebei University 
of Technology Hongqiao, Tianjin, China ó HR and  ó BR  in the 
figure represent the uncertainties in recorded commercial device 
data relative to the medical device (results presented in materials 
and methods), while

 ó RT is the standard deviation determined 
by correlating real-time data to post processing data (explained in 
Cardiorespiratory sensing in the chmi framework). Since the goal 
of actual HR and BR measures is just to estimate mental effort and 
other cognitive aspects by means of a neuro fuzzy inference system, 
the uncertainty in predicted workload is determined by 

 óWL  
(results showed in Efficiency categorization of cardiorespiratory 
measurements). The inferred task of human operator has been 
used in CHMI2. Consequently, the measurement errors of HR and 
BR impact the workload’s dependability.

Real data streaming and time processing protocols

The incorporation of cardiorespiratory sensing into an adaptive 
system like the CHMI2 necessitates the streaming and processing 
of measurement data in real time. To meet this key need, the 
real-time measurement data transfer capability of the commercial 
sensor was also evaluated. For this feature, the sensor enables real-
time data exchange over Bluetooth with any desktop device likewise 
equipped with Bluetooth and capable of running a required setup 
and data processing program [38]. Bluetooth is a very well wireless 
communication technology that exchanges data across short 
distances between smart phones, computers, and components 
using ultra-high frequency radio waves. Bluetooth was standardized 
by IEEE 802.15.1 [39]. Bluetooth (SIG) Special Interest Group, the 
worldwide standards body for Bluetooth technology, supervises 
hardware specifications and standardizes market-sold devices to 
guarantee that they comply with the standard and may be sent with 
associated licenses.

Comparing actual data to post-processing (offline) data, the same 
testing procedure as described in Efficiency Categorization of 
Cardiorespiratory Measurements is carried out in this instance. 
This test revealed that the two-sample data are in perfect agreement 

rate and 3 bpm overall breathing rate. The cardiorespiratory data 
collected from BH contains the unprocessed ECG signal (electric 
potential), the unprocessed respiratory waveform, and the processed 
Heart Rate (HR) and Breathing Rate (BR). The BH detects HR by 
catching heart electric signals for electronic filtering and analysis 
using silver-coated nylon skin sensors, which are then sent to the 
transmitter. For BR, an external load is used so that the resistance 
of the conductor grows in accordance to the height of the flexible 
Mylar, conductive fabric, and foam. This fluctuation in resistance 
is monitored using a sensor array with a patent-pending design. 
The expansion and contraction of the chest causes size differences 
that generate capacitance variations as a result of impedance 
changes. The frequency of such fluctuations is documented. For 
processed HR data, low and high filters with 15 Hertz and 78 Hertz 
cut-off frequency, are implemented to the raw ECG [36]analyzes 
and records a variety of physiological parameters including ECG, 
respiration, posture, and acceleration. The BioHarness operates 
in RF (Radio Frequency. These cutoff frequencies permit HR 
monitoring during strenuous exercise.

The readings from commercial gadget are compared to the data 
from clinically verified and medical-grade ECG apparatus. Under 
resting settings, both sensors are employed concurrently to obtain 
baseline readings and greater mental workload (MWL) situations, 
allowing for a direct one-to-one comparison. The data recording 
process for both sensors is synchronized algorithmically to achieve 
optimum accuracy between the BR frequencies of both devices. 
Figure 3 depicts the Analog Device Instrument (ADI) Power Lab 
8/30 like Dual Bio Amp DB066 unit, which is commonly utilized 
in medical research [37]. As the efficiency of this device has been 
thoroughly validated, the information from this sensor may be 
utilized as the reference data for validating the commercial product. 
The sampling frequency for every Analog Device Instrument (ADI) 
ECG signals band is 1000 Hertz, and the Lab Chart program is 
used to capture and save various ECG channels.

The electrodes for the medical ECG are positioned in accordance 

is positioned on the side’s lower left. According to Figure 4, an 
earth electrode is already on the right hand side of the bottom of 

abdominal region.

AD Instrument spirometer, a medical-grade and clinically proven 
respiratory sensing instrument was applied to define the BR. The 
spirometer is among the differential pressure measurements that 
measures the volume and velocity of inhaled and exhaled air, as 
well as the respiration flow rate. The sampling frequency for the 
respiratory waveform is 100 hertz. 

Efficiency categorization of cardiorespiratory measurements

Root Mean Square Error denoted by RMSE, standard deviation 
depicted by σ, correlation coefficient represented by CC, and mean 
bias MB throughout the whole dataset are the primary metrics used 
to evaluate the profitability of an organization device. These metrics 
were chosen as the most suggestive of measurement validity, and 
their definitions are as follows
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with the conventional 5-lead configuration, where the 1st  electrode 
is positioned on the shoulder’s right side, the 2nd  electrode is 
positioned on the shoulder’s left side, and the 3rd  electrode 

the sternum and the 4th  electrode is located within lower right 
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with 1 CC, mean bias, 0 RMS error, and. Thus, RT for both HR 
and BR is equal to zero. Note, however, that the Bluetooth signal 
is susceptible to packet losses and connection drops, especially in 
the presence of substantial Electro-Magnetic Interference, when 
substantial solid impediments lie in the line-of-sight path between 
both the sensor as well as the computing unit, or if the distance 
between the sensor and the computing unit has been excessive, 
leading to highly attenuated signals. These concerns are often 
researched by telecommunications professionals, and there are a 
number of studies in the relevant literature. A specific characteristic 
of Bluetooth link between both the BH and the computing unit 
just wouldn›t yield substantially different results in comparison to 
the literature, with the possible exception of a well-designed linkage 
«watchdog» functionality that restores dropped connections more 
consistently and promptly. The introduction of an appropriate 
interface for connection management, such as Lab Streaming 
Layer, helps alleviate the impact of transient connection drops 
without stopping the data stream [40].

Uncertainty propagation all over a process of neuro-fuzzy 
inference

A neurofuzzy inference system, that is built as part of the Cognitive 
HMI2 (CHMI2) to analyze real-time cardiorespiratory readings, 
is used to estimate the ambiguity in the operator’s WL from the 
cardiorespiratory and other physiological data. Fuzzy systems give 
some adaptability in adjusting system settings to individual users, 
such that the correlations utilized by the CHMI2 are unique to each 
person’s daily neurophysiological/mental state.

The approach for deriving the uncertainty in the categorized 
cognitive process as a function of neurophysiological inputs is based 
on our earlier findings [9]. In contrast to the previous research, 
this part focuses on pre-clustering and training findings based on 
experimental datasets, as well as their influence on uncertainty. In 
this work, the supposed inputs to the neurofuzzy inference system 
are HR and BR, and the estimated output is WL. A group of fuzzy 
rules and membership functions describe the fuzzy set. There are 
several versions of the fuzzy membership functions, each with its 
pros and downsides. The next section describes fundamental kinds 
including trapezoidal, Gaussian, triangular, sigmoidal, and bell 
functions. Our version of the Gaussian membership function is 
specified by parameters (μ, σ) as: 
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Where ϑ is a degree of the membership, μ is a center of a membership 
function, and is the cluster point difference, which is connected 
with the breadth of membership function. The procedure of pre-
clustering is the initial stage in neuro-fuzzy system calibration. Fuzzy 
C-Means FCM is selected as the first clustering technique owing to 
its constant precision. The clusters must be specified up front. It 
is determined if the data point belong to group j by generating the 
membership matrix U. The total membership of each data piece 
must be harmonized across all groupings [41]:
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where ki is the cluster group j center, uij is the degree of 
membership of data point i in group j, f is the weighting exponent, 
which would be a parameter that has a significant effect on the 
FCM’s performance, and Dij is described by qai−kjq, which is the 
Euclidean distance between both the i-th data point and the j-th 
cluster centre. The degree of fuzzy overlap is enhanced by raising 
the value of f. The following are the required requirements for 
minimizing:
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It is possible to calculate the least value of J (U, c1,... cc, 1,... n) 
by distinguishing it with the respect to all input parameters. The 
essential requirements are specified by:

n f 2
ij iji

i n f
iji

u .D
k

u
= ∑
∑   ………………… (9)

( )
ij 2

m 1
k ij
n 1

mj

1u
d
d

−

=

=
 
  
 

∑  ………………… (10)

The cluster centres k and membership degrees m are randomly 
initialized and then improved using equation (7, 8), respectively, 
before calculating an improved J from equation (5,6). Iteration 
of degree of membership and cluster centre computation is 
maintained until J meets a specified condition or mU(m+1) U(m)
m meets a termination criterion. The second step is calibrating the 
created fuzzy cluster parameters, so optimizing them to optimize 
the correlations among inputs and outputs (s). We emphasize 
that (ANFIS) Adaptive Neuro Fuzzy Inference System architecture 
provided via the MATLAB library and utilized for the bulk of 
the work reported in this research only permits the inclusion of a 
single individual output. Due to its higher performance, the hybrid 
training approach is used to alter its (cluster) input membership 
function parameters, while the output membership function 
parameters are employed in the training phase. The selected ANFIS 
type [42] is the m Takagi Sugeno, having input-to-output mapping 
rules expressed as

1 1 2 2

0 1 1 1 2

 :   ... 
    . . .  = + + + +

n n i in

i i

Rule k Ifa isX anda isA and anda isA then
hj pm pm a pm x pm a

function hj of j output and pmj represents the rule k and input I 
coefficients for this node function.

The WL is believed to have a linear relationship with difficulty 
level. Low BR and HR indicate light exertion, while high BR and 
HR indicate heavy effort [43-44]. Consequently, the rule-base is 
composed of with 2 fuzzy rules:

If HR and BR are both low, then WL = 0.099 + 0.1167a1 − 9.8a2;

If HR and BR are both low, then WL = 0.124 − 0.016a1 − 9.8 a2.

WL is a normalized number ranging from 0 to 1, with a minimum 
of 0.3 and a maximum of 0.7, since this math exercise’s Level 
of Detail (LOD) doesn’t demand 100 percent of participant’s 
cognitive capacity, as rated subjectively. The technique presented 

Where nth  input is Ain, membership function ai, node output 
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R) R to R interval may be determined by determining the time 
change between successive peaks. The (RtoR) interval is used to 
determine HR as:

60HR bpm
R2R

 =    ………………… (13)

For the purpose of comparing the clock, HR signal, and sample 
rates of both sensors were gathered and processed independently, 
since they might vary. The time was adjusted to synchronize 
the beginning and end of two datasets, and ECG signal from 
clinical device was the down sampled from 1k Hz to 0.25k Hz. 
In addition, the data-sets have indeed been resized to make sure 
data from the both sensors are in sync. Although there are several 
sources of electromagnetic interference in the surroundings of the 
intended application, our trials were done in a very realistic setting, 
and no substantial electromagnetic interference was identified. 
Furthermore, there is still a significant amount of noise in data such 
as movement artifacts, which might impact the system’s reliability. 
Therefore, the HR signal was filtered prior to system performance 
analysis, as is typical in cardiorespiratory monitoring applications. 
The selected method for reducing high frequency noise is the low 
pass filtering of Second order Butter-worth type that is undoubtedly 
the most reliable and reproducible raw signal processing approach. 
This filter allows signals below a specified cut-off frequency to pass 
while reducing frequencies above the cut-off frequency. This low-
pass filtering smoothes the data and is particularly calibrated to 
improve the measurement’s precision, taking into account the 
physical and physiological characteristics of monitored bio signal. 
For example, HRV is a key component of CHMI2 framework [8] and 
may be separated into two different bands: one is the (LF HRV) Low 
Frequency, which ranges from 0 to 0.15 Hz, and the second is the 
(HF HRV) High Frequency, which extends from 0.15 to 0.4 or 0.45 
Hz [47]. Both physical and mental WL are mostly connected with 
LF HRV, the cut-off frequency for our application may have been 
as low as 0.15 Hz; however, this would have needlessly constrained 
sensor characterization for the LF HR/HRV monitoring. At enable 
a cautious characterisation of sensor for all the HRV components 
and restrict the quantity of filtered the data, the cut off frequency 
was limited to 1 Hz with a curvature of 0.85, that is more than 
double the maximal physiological HF HRV element. Since HRV is 
obtained directly from same R to R as HR, a selected performance 
characterization relevant to both cardiac signals is provided. HR 
records lower than 50 bpm and more than 180 bpm, as well as 
BR records lower than the 5 bpm and greater than 30 bpm, were 
rejected per a data rejection policy.

The breathing waveforms from commercial and clinical devices were 
extracted, and the corresponding BR was computed. Specifically, 
the waveform was time-differentiated, the positive and the negative 
peaks in BR derivative were found to represent inhalation and 
exhalation, respectively. The BR was then computed for both 
the datum and measured breathing in same way as Equation (1), 
with R to R substituted by the time change between the onsets 
of inhaling episodes (peaks in first derivative that is the signal of 
chest expansion magnitude). The findings were upsampled to the 
common time reference, and then a low-pass filter with a cutoff 
frequency of the 1 Hz and a slope of 0.95 was applied. As human 
respiration has the lower frequency as compared to cardiac signal, 
this screening is atleast as conservative as of the HRV screening 
outlined above.

and assessed in [9] took into account the form and distribution 
of membership functions produced by the training procedure. It 
made no assumptions on the form or order of psychophysiological 
contour. As a result, no training data was supplied for the periods 
in physiological input data (and hence weren’t covered either by 
membership function) resulted in very stiff penalties such as higher 
uncertainty). As the human psychophysiological reaction from 
the reference is known to be very smooth and low-ordered [30], 
it is reasonable to assume that no peaks or troughs occur in the 
time during which no input training data is supplied. Therefore, 
we suggest a novel method based on the premise of a smooth low 
order psychophysiological frequency response. Despite the fact that 
training input data wasn’t even available for all the intervals, based 
on literature we can fairly conclude that such a smooth surface 
without major leap approximates the actual human reaction [45]. 
With this supposition, we can calculate the uncertainty in WL 
using the propagation of the uncertainty approach. The general 
formulation of uncertainty propagation is obtained from this 
multivariate expansion for every nonlinear differentiable function 
f: 

2
2
h i j

i 1,n j 1,n;i ji i j

äh ähähó 2 äa äa
äa äa äa= = ≠

   
 = +          
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  ………………… (11)

ai represent independent variables. Consequently, uncertainty 
propagation for WL estimations as a function of uncertainty in 
physiological inputs uncertainties has the following form:

2 2
2 2 2
WL HR BR BRHR

äWL äWL äWLäWLó ó ó 2 ó
äHR äBR äHRäBR

   = + +   
    ………………… (12)

where 2
WLσ  is the variation in the workload estimate, HRσ  is the 

variance in HR, BRσ  is the variance in BR, HRBRσ  is the covariance 
term of HR and BR (demonstrated the measurement population). 
The procedure of generating a polynomial surface from a FIS 
was mathematically explored in [46] and is now included in the 
MATLAB tool «gensurf».

Experiment design and raw measurement data processing

All study techniques and data collecting procedures were approved 
by RMIT’s University (ref: ASEHAPP 72-16) (CHEAN) College 
Human Ethics Advisory Network, and signed agreement was 
obtained from all participants. There are 10 participants in this 
study (eight men and two women, with a mean age of 28 ± 4.80 
years). For all subjects, the trials were conducted in late morning 
hours. Each participant was forced to do three minutes of basic 
arithmetic calculations at each of three (LOD) Levels of Difficulty: 
easy, medium, and high. Every question at each level required 
subtraction, addition, division and multiplication. In the medium 
and advanced levels, adding more digits enhanced the challenge. 
In the addition, time restriction for each question changes by 
difficulty: 60 seconds for easy, 40 seconds for the medium, and 30 
seconds for difficult. As shown in Figure 6, the one minute rest state 
was assessed before and after the test. Mathematical calculations 
were selected over more realistic ATM tasks because they have been 
found to elicit high levels of mental effort [46] without needing 
participants to have previous ATM experience. 

After the aforementioned testing processes were completed, raw 
ECG data were collected from the both commercial and clinical 
equipment. R peaks of signal were then detected in order to 
compute the instantaneous HR. After identifying each peak,(R to 
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Figure 2: Commercial gadget used in ATM CHMI2 study.

Figure 3: Dual bio amp DB066 device in power lab 8/30 (image by AD Instrument and reproduced with permission).

Figure 4: Design of a typical 5-lead ECG location.

J Aeronaut Aerospace Eng , Vol.12 Iss.2 No:1000316
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Figure 5: Validity of an approach for analyzing performance of wearable cardiorespiratory sensors. Note:  ( ) Comparison.

Figure 6: The mental strain exercise experimental procedure.

RESULTS 

After applying the data rejection criteria outlined in Experiment 
design and raw measurement data processing, Table 1 displays the 
aggregated validity findings of commercial device in comparison 
with relevant clinical sensor values. Across all individuals, the 
average RMSE for HR is 4.85 bpm, and average CC is 0.66. 
Examining merely aggregated correlations among two datasets 
has certain limitations: the discrepancy indicator is not provided, 
and the degree of agreement is not thoroughly evaluated. 
Hence, Bland Altman plot also used to examine the outcomes of 
the characterisation. This figure displays the dispersion of values, 
the range of values, the amount of systematic difference, random 
mistakes, the relationship between two procedures, and most 
significantly, the outcome variations [48]. Figure 7 displays Bland 
Altman plots for full dataset, broken down by HR (left) and BR 
(right) (right). Each blue dot calculates the mean sampling errors 
(difference between both the commercial and clinical sensors), and 
each black line represents the confidence interval or boundaries of 

agreement at a confidence level of 95%. From these boundaries of 
agreement lines, the range of values, whether they are little or huge, 
can be clearly observed.

In the last phase of sensor characterisation, the complete analysis 
of measurement errors were examined. Figure 8 depicts the BR 
and HR measurement error estimates for all subjects as histograms. 
In addition, the picture depicts the normality test (Gaussian) fits. 
Compared to HR, the mean bias () and standard deviation () are 
greater for BR, making BR a right skewed distribution.

Uncertainty in the inference system

Using polynomial coefficients from psychophysiological response 
function (shown in Figure 9 on the left), the variance in WL 
estimations for every value of HR and BR may be computed. Given 
the sensor uncertainties determined in the preceding section as 
σBR = 6.534, σHR = 0.720, and σHRBR = 0.560, the findings for 
a single individual are shown in Figure 9 (right).
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Table 1: The commercial device's HR and BR validation findings.

RMSE [1/min] σ [1/min] CC Mean Bias [1/min]

HR 4.851 4.11 0.662 1.9

HR min error 0.727 0.719 0.989 -1.511

HR max error 14.86 10.55 0.319 10.48

BR -9.728 7.393 0.086 -6.002

BR min error -7.957 6.533 0.187 -2.77

BR max error -12.94 8.024 0.028 -15.79

Figure 7: HR (on the left) and BR (right) Total population Bland-Altman plots Mean differences (red lines) and 95% confidence intervals (black 
lines) are shown. Note: ( ) Average data, ( ) 95% CI, ( ) Mean difference.

Figure 8: HR (left) and BR (right) error statistical distributions (histograms) for the total population For reference, the normal (Gaussian) fit curve 
is also displayed. 
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DISCUSSION

According to the classification of raw cardiorespiratory measures 
(Table 1), the CC in HR was more than 0.50 in the overwhelming 
majority of instances, indicating a moderate (or better) correlation. 
The minimal mean HR bias is a relatively low 1.511 bpm, while 
the highest is 10.48 bpm. The majority of HR’s mistakes were 
committed by a single participant who looked to be wearing a loose 
strap. Specifically, it was found that the HR data of one person and 
the BR data of the same participant and then another participation 
were not accurately recognized by the industrial monitor, most 
likely due to the improperly tightened strap. As this is a restriction 
of the sensor that is noted in the handbook, the information 
from these individuals should have been discarded; instead, it was 
included for the sake of completeness. The performance of BR 
was continuously inferior to that of HR. As shown by the CC, the 
connection between BR readings was very weak. In addition, the 
BR data demonstrated a significant RMSE, and average bias with 
corresponding values of 9.729, 7.394, and 6.003 bpm. Visible in 
the Bland–Altman plots (Figure 7) are quite considerable changes 
in HR and BR. Specifically, Figure 7 (left) demonstrated that the 
mean difference grew in both the positive and negative directions 
when HR values climbed. The average difference between 
individuals was 3,021. According to [12], the greatest difference 
between the commercial and clinical devices was 25. Figure 7 
(right) likewise demonstrated an increasing tendency of negative 
difference with rising BR values. Lastly, the Bland–Altman plots 
revealed that there have been no significant differences between 
individuals, verifying that the low CC values for BR were accurate. 
The average BR difference between participants is 5,466 bpm, 
which exceeds the value specified in the technical criteria. We were 
forced to examine the basic BR time-series data (Figure 10) and the 
pulmonary amplitude plots for all subjects as part of our study of 
these unsatisfactory findings. These further experiments led us to 
the conclusion that the commercialized device consistently missed 
breaths with a lesser amplitude and greater frequency.

Considering the uncertainties in the projected cognitive workload 

(Segment 3.1), the prime target of WL was 45%. Even though 
this level appears to be high, it is reasonable given that the cardio-
respiratory response is much slower than the cognitive processes 
we are assuming [49] and that the operations we prescribed to the 
people involved were likely less than the cognitive load they could 
withstand at their maximum capacity. Attempting to assess the 
whole cognitive spectrum would have necessitated an adaptive exam, 
which will be investigated in future studies. From Figure 9 (right), 
it is obvious that the uncertainty is very low (below 25 percent) 
across a large range of HR and BR inputs, but grows significantly 
in a narrow area of high HR and low BR. The best uncertainty 
associated with estimated workload WL is 37.64 percent (Table 
2). The worst-case maximum uncertainty regarding inferred WL is 
222 percent, because of BR’s very high level of uncertainty. Before 
beginning real-time measurements, the calibration procedure 
of the cardiorespiratory equipment should be repeated until an 
acceptable error is attained when such substantial uncertainties 
are identified. Table 3 displays the uncertainty within estimated 
workload simply using HR as an input variable, since we have 
shown that the substantial uncertainty in BR also contributes to 
considerable estimate mistakes. The average WL reduces by 38.95% 
from 1,328 to 0.82. The worst-case scenario exhibits increased 
performance but remains useless. The average WL without the 
worst-case scenario is reduced from 0.811 to 0.356, which is within 
the allowed range of less than 0.45.

The overall result of the validation would be that the assessment 
validity of breathing rate is insufficient for detecting mental 
activity, wherein more frequent and smaller and breaths are typical. 
However, it should be emphasized that BH had been created 
primarily for athletics and sport medical applications, therefore 
these results do not contradict expectations. Alternative respiratory 
sensors must be examined for the CHMI2 deployment in light of 
the findings of this characterization. Hemodynamic sensors, which 
detect factors linked with blood flow, have the potential to be less 
invasive and perhaps more accurate in measuring mental activity. 
In the context of future study, their assessment validity will be 
examined.

Figure 9: (Left) psychophysiological response surface for one of the participants. (Right) Uncertainty in WL as propagated through the 
psychophysiological response surface.
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Table 2: The neuro-fuzzy inference system's σHR, σBR, σHRBR, and σWL.

 σHR σBR σHRBR σWL

Best 0.721 6.535 -0.561 0.377

Worst 2.492 7.434 17.49 2.221

Average 4.111 7.395 0.851 1.331

Table 3: σHR and σWL from the system of neuro-fuzzy inference.

 σWL % Decrease

Best 0.124 33.38

Worst 1.212 45.46

Average 0.812 38.95

CONCLUSION

This research focused on the experimental characterization of a 
commercialized cardio-respiratory sensor for potential applications 
in ATM and aeronautical Human–Machine Systems (HMS). This 
sort of cognitively challenging activities is linked with an increased 
mental workload, but no prior study has examined the verification 
and performance assessment of commercial sensors that are 
routinely employed in such mental workload investigations. This 
research examines a commercially available sensor of sport and 
sport medicine applications that is able of both offline recording 
and real-time data broadcasting of raw and processed cardio-
respiratory data. During realistic mental demanding tasks, the 
measurement validity and precision of both Heart Rate and 
Breathing Rate measures from wearable commercial gadget were 
evaluated by comparative evaluation with a clinically useful device.

Extending the standard propagation of uncertainty theory, the 
research also established and implemented a unique way to 
quantify the uncertainty in cognitive state estimations relying 

on the variability within input physiological signals. Particularly, 
the cardio-respiratory data were used to quantify the variation in 
WL as well as other cognitive state estimations, which were then 
propagated across the physiologic response surface established by 
a neuro-fuzzy inference model. The investigation revealed that the 
commercialized device obtained high accuracy in measuring heart 
rate but performed badly in measuring Breathing Rate (BR) during 
mental demanding activities. Therefore, the error in cognitive state 
estimations was only acceptable if restricted to cardiac measures. 
The chosen device is sufficient for monitoring of cardiac as part of 
the intended aviation HMS application; however different devices 
will be required for respiratory tracking. The leading choices for 
measuring mental activity are circulatory sensors, which are often 
less obtrusive and perhaps more accurate. This study adds to the 
larger investigation on CHMI2 for ATM and avionics systems, 
one of the primary areas of innovation in aerospace systems. To 
correctly monitor cognitive processes throughout complicated 
activities, researchers will investigate the best integration and 
fusion of diverse neurophysiological sensors.
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