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Abstract
Soil CO2 efflux was measured by alkali absorption method from April to December 2012 in two different forest 

types, i.e., Pinus wallichiana and Abies pindrow, with three replicate plots in each forest type. Soil CO2 efflux was 
found maximum in July and minimum in December in both the forest types. Significantly (P<0.001) greater soil CO2 
efflux was measured in Pinus wallichiana forest compared to Abies pindrow forest throughout the study period. The 
range of soil CO2 efflux (mg CO2 m

-2 hr-1) from the soil was 126-427 in Abies pindrow forest and 182-646 in Pinus 
wallichiana forest. Soil CO2 efflux showed greater values in Pinus wallichiana forest than Abies pindrow forest, 
which could be attributed to greater tree density, tree biomass, shrub density, shrub biomass, forest floor litter and 
moisture. Soil CO2 efflux also showed significant positive relationship with air temperature. In addition to that the 
altitudinal difference may be one of the reasons for variation in soil CO2 efflux between the two forest types. This 
result also indicates that at higher altitude even a small difference in elevation (100 m) alter the functional attributes 
of the ecosystem.
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Introduction
Soil CO2 efflux (SR) have received much recent attention from global 

change and ecosystem science communities for several reasons: (a) Soil 
CO2 is the second largest carbon (C) flux in terrestrial ecosystems, and 
plays a critical role in global carbon cycling and (b) Soil CO2 is a key 
component of biogeochemical models [1], but a large uncertainty 
exists in integrating respiration components into those models [2,3]. 
Furthermore, CO2 efflux can vary greatly with vegetation type, soil 
microbial biomass, and soil chemical properties among and within 
sites [4,5]. Shifts in vegetation covers may profoundly affect soil CO2 
efflux and net primary production by influencing substrate quantity 
and quality supplied to the soil, fine root, microclimate and structure 
[6,7]. Approximately 70% of ecosystem respiration in temperate forests 
is coming from soil [8]. Globally, CO2 efflux  is estimated to be 98 ± 
12  Pg  C  yr−1 or 85 Pg  C  yr−1 if agricultural areas are excluded and is 
increasing at a rate of 0.1 Pg  C  yr−1 [9]. Soil respiration is the main 
form of carbon flux from soil to atmosphere in the global carbon cycle 
[10]. The CO2 efflux of forest soils has been intensively investigated 
during the last decade as it represents a major flux of the C cycle in 
forest ecosystems [11]. Soil properties, such as pH, soil depth, parent 
material, composition of litter fall and topography may also influence 
heterotrophic soil CO2 efflux [12,13]. The two important factors for 
seasonal and inter-annual variability of CO2 effluxare soil temperature 
and moisture [14-16]. Soil CO2 efflux was also closely related to stand 
biomass and basal area of trees [17,18].

The variation of soil CO2 efflux among forest types on different 
spatial scales results from interacting variables such as climatic 
conditions, forest productivity, litter quality, as well as physical 
and chemical properties of soils. Another reason for the variation 
of soil CO2 efflux among different forest sites is possibly the varying 
contribution of heterotrophic and autotrophic respiration [19]. 
Underlying processes controlling Soil CO2 efflux are not well known, 
for example, the coupling and decoupling of  Soil CO2 efflux  with 
ecosystem metabolism [20]. Therefore, more data and comprehensive 
research on Soil CO2 efflux  from various biomes are required for 
assessing and predicting  Rs  and its responses to undergoing global 

changes. Quantifying the spatial and temporal patterns of soil 
respiration and their relations to environmental controls is essential to 
the C cycle in terrestrial ecosystems [21]. Soil respiration (soil surface 
CO2 flux, Rs) is mainly composed of heterotrophic respiration (RH) of 
microorganisms and soil animals, and autotrophic respiration (RA) 
of plant roots [21,22]. The response and adaptation to environmental 
variables by RH and RA are different [23,24]. Soil CO2 efflux represents 
the sum total of all soil metabolic processes in which CO2 is produced 
[21,25]. The temperate forests play an important role in Indian 
forestry and ecological construction, where as there is no published 
information is available on soil respiration from temperate forests of 
Kashmir Himalayas. Therefore, soil CO2 efflux of forest ecosystems and 
the controlling factors of CO2 emission in these forests are not only 
essential to estimate C budget in forest ecosystems in western Himalaya 
of Jammu & Kashmir (J&K), but also important for evaluating the 
function of Indian temperate forest ecosystems in global C budgets.

In this study, we measured the soil CO2 efflux in two major 
temperate forest types i.e., Abies pindrow and Pinus wallichianain 
Western Himalaya of J&K, Pahalgam, India. The specific objectives 
were to: (1) compare monthly CO2 efflux between Abies pindrow and 
Pinus wallichiana forest types and (2) how environmental variables 
alter soil CO2 efflux between the two forest types.

Materials and Methods
Study sites

The study was conducted in the western Himalaya of Jammu & 
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Kashmir, India (33° 20’ and 34° 54’N latitudes and 73° 55’ and 75° 35’E 
longitudes and covers an area of 15,948 km2) between the elevations 
of 2210 and 2375 m.a.s.l. In these two conifer forests: Abies pindrow 
and Pinus wallichiana, three replicate sub-plots for each forest type 
were selected (Figure 1). The mean total basal area was 54.1 and 55.3 
m-2ha-1 in Abies pindrow and Pinus wallichiana respectively. The 
dominant shrub and herb species at both the study sites are Vibernum 
grandiflorum and Stipa sibirica (Table 1).

The annual precipitation during the study period was 1185.8 
mm (Figure 2). However, there are differences in the daily weather 
conditions of Kashmir valley. This is due to high altitudinal differences. 
Precipitation is bimodal in nature (January-March and August- 
September). However, the snowfall was heavy in the month of January 
and February. Average Temperature reaches -8.3˚C during winter and 
26˚C or above during summer [26]. January is the coldest month and 
June and July is the warmest month.

Measurement of total CO2 efflux

Soil CO2 efflux was measured by alkali absorption method [27], at 
two different forest types, using plastic jars, inserted 10 cm into the 
ground. Three replicate sub-plots in each forest type were selected for 
the measurement of soil CO2 efflux. Five replicates of the plastic jars 
were set up in each sub-plot, and one set of three control plastic jars 
with airtight lids in each sub-plot. Before each plastic jar was fixed, the 
vegetation falling within the plastic jar was clipped at the base with 
the help of scissor. A 50 ml beaker containing 20 ml 0.5 N NaOH was 
placed in a thin wire tripod stand that holds the jar off the ground by 
about 2 cm. The alkali was titrated against 1N Hcl after 24 hours of 
absorption period to avoid diurnal variations [25,28]. The jars were 
placed randomly, and on each sampling date the soil moisture was 
measured by gravimetric method up to 10 cm soil depth. The CO2 
evolved during the experiment was calculated by following the formula 
of Joshi et al. [25].

Figure 1: Map showing the location of the two study sites: site I (Pinus wallichiana) and site II (Abies pindrow).

 (Pinus wallichiana)  (Abies pindrow)
Altitude (m) 2210 2375

Latitude N 34o00’51.9 N 34o02’16.8
Longitude E 075o18’40.6 E 075o20’35.1

Mean annual precipitation (mm) 1289 1289
Dominant tree species Pinus wallichiana Abies pindrow

Density (tree ha-1) 245 ± 16.5 232 ± 12
Tree basal area (m-2 ha-1) 55.38 ± 4.25 54.11 ± 2.63
Shrub density (No. ha-1) 87349 ± 2196 15547 ± 1501
Shrub Biomass (g m-2) 887 ± 590 330 ± 118
Forest floor litter (g m-2)  466.46 ± 15.39  194.13 ± 2.99

Dominant understory species

Vibernum grandiflorum
Stipa sibirica
Poa bulbosa

Fragaria nubicula

Vibernum grandiflorum
Stipa sibirica

Fragaria nubicula
Viola odarata

Soil C stock (Mg C ha-1) 
0-30 cm 55.38 ± 1.62 50.67 ± 1.20

pH 6.13 ± 0.07 6.13 ± 0.07

Table 1: Characteristics of the Pinus wallichiana and Abies pindrow temperate forest in western Himalayas, India.
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MgCO2 = VxNx22,

Where V represents titration of the blank minus the sample 
titration and N is the normal acid value.

In the month of October, 15 soil cores up to 30 cm depth were 
collected randomly in each sub-plot and mixed together to make a 
composite soil sample. Five representative soil samples from each sub-
plot were taken into the laboratory for further analysis. Soil organic 
carbon (SOC) was estimated by following the formula of Pearson et 
al. [29].

Statistical analysis

The variation in soil CO2 efflux in two different forest types (Pinus 

wallichiana and Abies pindrow) was examined with student‘t’ test. The 
relationship between soil CO2 efflux with tree density, shrub density, 
shrub biomass, forest floor litter, and SOC was examined with linear 
and regression analyses.

Results
Total soil CO2 efflux (mg CO2 m

-2hr-1) showed a similar temporal 
pattern in both the two forest types, the values being highest during 
the month of July and lowest during the December month (Figure 3). 
The soil CO2 efflux in the month of January, February and March has 
not been measured due to complete snow cover. The Pinus wallichiana 
forest type showed a higher rate of CO2 efflux throughout the study 
period as compared to Abies pindrow forest type. The mean CO2 efflux 

Figure 2: Mean monthly maximum and minimum temperatures and rainfall pattern of the study areas in two temperate forests of western Himalayas, India.

Figure 3: Mean monthly Soil CO2 efflux in two different temperate forest types (Abies pindrow & Pinus wallichiana) in western Himalayas, India.
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(mg CO2 m
-2hr-1) values ranged from 126-427 in Abies pindrow forest 

and 182-646 in Pinus wallichiana forest.

The CO2 efflux showed positive correlation with tree density, shrub 
density, shrub biomass, forest floor litter, soil organic carbon (SOC) 
and air temperature (Figure 4a and 4b). However, tree basal area, 
herb biomass, herb density, rainfall and soil pH showed very weak 
correlation with soil CO2 efflux.

Discussion
In the present study soil CO2 efflux peaked during the warm 

summer month’s July-August and decreased during the cold winter, 
December. A similar temporal variation in soil respiration was 
observed in several temperate forest ecosystems [3,30-33]. In the 
present study, as the warmer months approached with frequent 
precipitation, the micro-organisms inhabiting the soil became more 
active causing an enhanced CO2 efflux rates as observed by Pandey et 
al. [32]. Similar trend of significant positive correlation of soil CO2 with 
temperature has been reported by several investigators on temperate 
forest ecosystems [34,35]. Minimum rate of CO2 efflux from both forest 
types was recorded in winter months as a result of decreased microbial 
populations during this period as reported by Pandey et al. [32]. The 
low solar radiation in winter months may be one of the reasons for 
lower CO2 efflux rate in winter months [36]. The estimated CO2 efflux 
ranged from 126-427 in Abies pindrow forest and 182-646 in Pinus 

wallichiana forest during the present studyis well within the range 
reported in various temperate forests [3,34,37].

Vegetation may alter soil CO2 efflux rate by influencing soil micro-
climate and structure, the quantity and quality of detritus supplied to 
the soil, and overall rate of root respiration [7,38,39]. In the present 
study, the Pinus wallichiana forest type showed significantly greater 
(P<0.01) rate of CO2 efflux throughout the study period as compared 
to Abies pindrow forest type. Similarly the differences in vegetation-
related controls on CO2 efflux have been evaluated for different places 
for different ecosystems [6,7,36,40,41]. Greater CO2 efflux in Pinus 
wallichiana site could be attributed to greater tree density, shrub 
density, shrub biomass, forest floor litter and SOC.

Numerous studies have shown that climatic factors, particularly 
temperature and precipitation are the major determinants of CO2 efflux 
at global, regional and local scales [42]. Several studies stated that air 
temperature have negative relationship with CO2 efflux [43,44]. In the 
present study soil temperature showed significant positive correlation 
with CO2 efflux. It is generally acceptable that temperature is a key 
abiotic variable that controls on soil CO2 efflux. Similar results on the 
positive correlation between soil CO2 efflux and temperature have been 
observed by Lloyd and Taylor [45] and Lin et al. [46]. Generally in cold 
temperate forests, raising air temperature might be creating favourable 
environment for microbial growth as well as herbaceous community 

Figure 4a: Relationship between mean soil CO2 efflux and atmospheric parameters (rainfall and mean temperatures) in temperate forests of western Himalayas, 
India.
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establishment which is reason for increase in CO2 efflux during higher 
temperature period. Rainfall has also showed weak correlation with soil 
CO2 efflux which is in accordance with [3,39,47,48].

Carbon stocks in soil and forest floor litter significantly contribute 
to ecosystem CO2 efflux through manipulating autotrophic and 
heterotrophic respiration [33,49,50], but these variables are less 
considered than soil moisture and soil temperature in calculating 
soil respiration. Zhou et al. [33] stated that combined carbon stock 
in litter and top soil explain 48% of spatial variation of CO2 efflux in 

temperate forests. In the present study various parameters such as tree 
density, shrub density, shrub biomass, forest floor litter and SOC have 
showed positive correlation with CO2 efflux. The similar results have 
been shown by other studies [3,33] in temperate forests. The present 
study revealed that vegetation types and its associated micro-climate 
determine the rate of soil CO2 efflux.
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