Traffic-Related Air Pollution Effect on Fast Glycemia of Aged Obese Type 2 Diabetic Mice

Matsuda M1, Krempel PG2, André PA3, Freitas JR3, Freitas LAR4, Veras PST4, Saldiva PHN5 and Marquezini MV5,*

1Laboratory of Investigation in Ophthalmology, University of São Paulo Medical School, São Paulo, 01246-903, Brazil
2Experimental Air Pollution Laboratory of Pathology Department, University of São Paulo Medical School, São Paulo, 01246-903, Brazil.
3Department of Pathology and Forensic Medicine, Medical School, Federal University of Bahia, Salvador, 40025-010, Brazil.
4Gonçalo Moniz Research Center, Oswaldo Cruz-Fioestriz Foundation and Federal University of Bahia, Salvador, 40296-710, Brazil.
5Pro-Sangue Foundation, São Paulo, 05403-000, Brazil

Abstract

Recent experimental data have provided associations between ambient PM2.5 (fine particulate matter; diameter ≤ 2.5 μm) and propensity to inflammation and chronic diseases especially among susceptible groups, such as elderly people. There is cumulative evidence that type-2 diabetes mellitus is a chronic inflammatory state aggravated by factors that promote endothelium inflammation. Accordingly our hypothesis that the exposure of aged obese population to PM2.5 might aggravate type-2 diabetes, we used a model of aged, diet-induced obese mice. C57BL6 male mice were fed with regular chow (n=30; RC) or high-fat chow (n=36; HF) during one-year and randomly assigned to filtered (FA-RC, n=16; FA-HF, n=19) or PM2.5 concentrated air (600 µg/m3) (EXP-RC, n=14; EXP-HF, n=17) chambers to have a daily 1 hour exposition during consecutive 30- days. Fast glycemia was measured before the animals were euthanized. The Institution’s Ethics Committee approved all experimental procedures. Heart mRNA content of selected migration, signalization and adhesion proteins were measured by SYBR Green fluorescence Real Time RT-PCR protocol using appropriate primers. There were no difference between RC-EXP and RC-HF nor between HF-EXP and HF-HF body weight. Regarding fast glycemia, both, RC and HF groups, were diabetic, but only the HF group was affected by acute exposure to PM2.5 (mean ± SD, EXP-HF vs FA- HF, 172.8 ± 23.4 vs 156.7 ± 17.6, p <0.05; EXP-RC vs FA-RC, 149.8 ± 19.2, 139.7 ± 15.3, ns; ANOVA). The gene expression profile of E-selectin, IL-6, VCAM-1, ICAM-1 and MMP-9, was differently affected by PM2.5 in heart and lung. Proteins activated by inflammatory stimuli involved in the inhibition of insulin signaling are being investigated.

Keywords: Aged; Obesity; Type 2 diabetic mice; Air pollution

Introduction

In 2011, the International Diabetes Federation reported that diabetes mellitus (DM) affects 366 million people worldwide, projecting that by 2030, to reach 566 million. Over 99% of cases represent type 2 diabetes, which is accompanied by pathophysiological abnormalities of the coronary artery and cerebrovascular system presenting, in addition, peripheral arterial disease. Thus, the increased risk of DM-2 automatically increases the risk of arterial disease [1,2].

Air-pollution exposure alters endothelial function in both animals and humans [3,4]. Alterations in endothelial function often precede changes in insulin resistance and have been implicated in reduced peripheral glucose uptake [5].

Because of the urban centers increasing growth and intensive use of vehicles engines, air pollution by particles with diameter ≤ 2.5 μm (PM2.5), composed by sulfates, nitrates and oxides, is more frequent. This particle can reach up to the lung alveoli. Inhaling PM2.5 contributes to increased mortality and morbidity of the population exposed, inducing lung stress [6] and causing a worsening of cardio-metabolic disease [7,8].

Aging compromises the body’s ability to compensate for the effects of environmental hazards and therefore the effects of pollution are more severe in the elderly. Epidemiologic studies evidence that diabetic individuals are adversely affected by air pollution exposure [9]. Obesity is the primary cause underlying the development of insulin resistance and type 2 diabetes [10] and is associated with chronically elevated plasma levels of IL-6 [11]. Studies in experimental rat models have shown that air pollution aggravates inflammation and insulin resistance especially in obese animals [12].

Due to the thousands of people continuously exposed to PM2.5, long term effects of this ubiquitous pollutant in the air cause major problems for the global public health [13-16].

Seeking to correlate pollution PM2.5 with pathophysiological processes such as obesity, diabetes and aging, we chose to study the gene expression of adhesion molecules (VCAM-1, ICAM-1 and E-selectin), the extracellular matrix metalloproteinase (MMP-9) and the inflammatory cytokine interleukin-6 [17-21], in elderly and obese mice subjected to daily exposure to PM2.5 in a controlled ambient. This set of molecules was chosen for its important role in tissue homeostasis and repair [22-24].

Materials and Methods

Animals

C57BL6 male mice were obtained and kept in the Center Gonçalo Moniz Oswaldo Cruz Foundation of Salvador – Bahia, Brazil vivarium.

Due to the thousands of people continuously exposed to PM2.5, long term effects of this ubiquitous pollutant in the air cause major problems for the global public health [13-16].

Received April 12, 2013; Accepted June 20, 2013; Published June 22, 2013

Copyright: © 2013 Matsuda M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
After weaning, animals were divided into two groups: 1) RC, fed with a regular chow (n=30) and 2) HF, fed with high-fat diet (n=36). After a year of treatment, the aged animals, lean (group RC) and obese (HF group), were transferred to the Laboratory of Experimental Air Pollution (LPAE), FMUSP, and randomly distributed in the exposure chambers to air free of particles with filtered air (FA; n= 16, RF; n= 19, HF) or concentrate air containing PM\textsubscript{2.5} (EXP; n= 14, RC; n= 17, HF). During the exposure period, the animals were weighed daily and fasting glycemia was measured on the thirty day prior to euthanasia, on average at 14 months of age. The project was conducted in accordance with the Guide for Care and Use of Laboratory Animals (NRC, 1996) and approved by the Ethics Committee on the Use of Animals of the Oswaldo Cruz Foundation, RJ (license LW 16/09).

Exposure protocol

The animals were exposed for consecutive thirty days to 600 µg.m-3 of fine inhalable particulate matter (PM\textsubscript{2.5}) during one hour, considering the maximum load recommended by WHO (maximum daily mean concentration of 25 µg.m-3) in the atmospheric particle concentrator [25] (APC) of the Medical School, USP (EXP group). As a control, another group remained under identical conditions, but with filtered air (FA), i.e., free of particles.

In the APC inlet, the external air is captured with vacuum and conditioned to remove particles over PM\textsubscript{2.5} by the use of a single filtered air (FA), i.e., free of particles.

The results of the experiments were analyzed by one way ANOVA. A p value of <0.05 was considered statistically significant.

Results

Exposure to PM\textsubscript{2.5} does not alter body weight, but affects fasting glycemia

Regarding body weight, no differences were observed between FA-RC and EXP-RC nor between FA-HF and HF-EXP (Table 2 and Figure 1A).

Possibly due to age, even the lean animals exposed to filtered air showed fasting glycemia above 110 mg.kg-1, indicating that glucose uptake by the cells was already compromised. However, only the obese animals had worsening in fasting plasma glucose after exposure to PM\textsubscript{2.5}, i.e., the group EXP-HF presented fasting glycemia levels significantly higher than the group FA-HF (Table 2 and Figure 1B).

The gene expression profile of the proteins studied are differently affected by air pollution in heart and lung

VCAM-1 gene: Its expression was not affected in both tissues in the lean mice group (EXP-RC vs FA-RC not significant in lung and heart). However, in the obese group, we found differences between EXP-HF and FA-HF in the lung but not in the heart tissue (Figures 2B and 2A, respectively; Table 3).

Statistical analysis

Data are expressed as mean ± CI 95% unless otherwise indicated. The results of the experiments were analyzed by one way ANOVA. A p value of <0.05 was considered statistically significant.

Extraction of lung and heart total RNA and quantitative real-time PCR

Total RNA was extracted using TRIzol (Invitrogen) following the manufacturer’s standards. Real-time PCR was performed using the Corbett Rotor-Gene 3000 (Qiagen Valencia, CA, USA) detection system. SYBR Green I based real-time polymerase chain reaction (PCR) method was adopted for mRNA expression of migration and adhesion proteins (E-selectin, VCAM-1, ICAM-1), IL-6 (signaling protein) and MMP-9 (extracellular matrix metalloproteinase) gene expression, in heart and lung. All reactions were performed under the same condition: denatured at 95°C for 5 min, followed by 40 cycles of PCR, each cycle consisting of 95°C for 30s, 60°C for 15s, and 72°C for 30s. Table 1 describes the primers used. Each reaction was performed in triplicate and results were normalized for the expression of β-actin gene and Rotor Gene software version 6.0 was used to quantify the transcripts.

Table 1: Primers used in the analysis by real time RT-PCR. bp, base pair.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Gene Bank Accession Number</th>
<th>Forward</th>
<th>Reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCAM-1</td>
<td>NM011693</td>
<td>5′ tcctccaggaatacaacagat 3′</td>
<td>5′ acaaggtctggttcacagcac 3′</td>
</tr>
<tr>
<td>ICAM-1</td>
<td>NM010493</td>
<td>5′ aagggacatcacatctaagg 3′</td>
<td>5′ gctcggagacatlagagaa 3′</td>
</tr>
<tr>
<td>E-Selectin</td>
<td>NM01345</td>
<td>5′ ccctgccagcggctagt 3′</td>
<td>5′ ccttcacacatccaaagct 3′</td>
</tr>
<tr>
<td>MMP-9</td>
<td>NM015959</td>
<td>5′ ggtggcagcgcagctg3′</td>
<td>5′ ggtggtggctgattctgtct 3′</td>
</tr>
<tr>
<td>IL-6</td>
<td>NM031168</td>
<td>5′ ttcctctggtctgtcgag 3′</td>
<td>5′ ctaaagaacctgctgtggt 3′</td>
</tr>
<tr>
<td>β-Actin</td>
<td>X03672</td>
<td>5′ ccagactgtctgcagacag 3′</td>
<td>5′ ttgaaggggtgcagttgag 3′</td>
</tr>
</tbody>
</table>

Table 2: Descriptive statistics of body weight and Fast Glycemia levels results. FA-RC, filtered air - regular chow; EXP-RC, exposure concentrate air containing PM\textsubscript{2.5}; regular chow; FA-HF, filtered air - high-fat diet; EXP-HF, exposure concentrate air containing PM\textsubscript{2.5} - high-fat diet.
ICAM-1 gene: Its expression was unchanged in both tissues in all experimental conditions
(Figures 2C, 2D and Table 3).

MMP-9 gene: In the heart, gene expression of MMP-9 decreased in both exposed lean and obese mice (Figure 2E). At the lung, although the mean of exposed animals were higher than their respective controls, the differences were not significant (Figure 2F and Table 3).

E-selectin gene: Its expression was not affected in both tissues of obese mice nor in the lung of lean mice. However, comparing unexposed and exposed lean mice we found an increased expression of E-selectin at heart (Figures 2G, 2H and Table 3).

II-6 gene: Its expression was not affected in both tissues in the lean mouse group. However, its expression increased in lung tissue of exposed obese animals comparing the not exposed controls, but not in the heart tissue (Figure 2I, 2J and Table 3).

Discussion

Literature data indicate that diabetic patients are more susceptible to worsening cardiovascular diseases [3,26], however, there are few experimental controlled studies on the mechanisms that lead to increased susceptibility of diabetic subjects to air pollution. We studied the effects of controlled PM2.5 exposure in worsening type 2 diabetes, increased susceptibility of diabetic subjects to air pollution. We studied experimental controlled studies on the mechanisms that lead to worsening cardiovascular diseases [3,26], however, there are few experimental controlled studies on the mechanisms that lead to increased susceptibility of diabetic subjects to air pollution.

Inflammation in response to PM2.5 exposure represents a common mechanism that may interact with other pro-inflammatory influences like diet and lifestyle to modulate susceptibility to cardiometabolic diseases [28]. Mechanisms proposed to explain associations between air pollution and cardiovascular disease, specifically, inflammation, oxidative stress, and endothelial dysfunction, are plausible mechanisms linking air pollution with the development or exacerbation of diabetic conditions. Several studies have been indicate that type 2 diabetes subjects present a greater inflammatory response to PM2.5 exposure [29-32], but what is not known is whether diabetes is in itself an adverse outcome of air pollution [33].

Studying insulin resistance (IR) and type 2 diabetes mellitus development and its relation to air pollution may help clarify the causative relations between environmental factors and the development of cardiovascular risk [34]. Inflammation and oxidative stress pathways in disease development may provoke maladaptive responses that, in turn, adversely affect organ function and appear to play critical roles in this process as demonstrated by numerous investigations [35-38]. The effects of PM2.5 exposure on cardiovascular and pulmonary systems have been extensively studied with both short- and long-term exposures implicated in major adverse cardiovascular events [3,14].

FA-RC vs EXP-RC
FA-HF vs EXP-HF

<table>
<thead>
<tr>
<th></th>
<th>heart</th>
<th>lung</th>
<th>heart</th>
<th>lung</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCAM-1</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td><0.01</td>
</tr>
<tr>
<td>ICAM-1</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>MMP-9</td>
<td><0.05</td>
<td>ns</td>
<td><0.01</td>
<td>ns</td>
</tr>
<tr>
<td>E-selectin</td>
<td><0.05</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>IL-6</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td><0.05</td>
</tr>
</tbody>
</table>

Table 3: Statistical analysis (ANOVA) results of gene expression comparing PM2.5 with filtered air exposed lean and obese mice groups. FA-RC, filtered air - regular chow; EXP-RC, exposure concentrate air containing PM2.5 - regular chow; FA-HF, filtered air - high-fat diet; EXP-HF, exposure concentrate air containing PM2.5 - high-fat diet; ns, non-significant.

FA-RC vs EXP-RC
FA-HF vs EXP-HF

<table>
<thead>
<tr>
<th></th>
<th>heart</th>
<th>lung</th>
<th>heart</th>
<th>lung</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCAM-1</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td><0.01</td>
</tr>
<tr>
<td>ICAM-1</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>MMP-9</td>
<td><0.05</td>
<td>ns</td>
<td><0.01</td>
<td>ns</td>
</tr>
<tr>
<td>E-selectin</td>
<td><0.05</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>IL-6</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td><0.05</td>
</tr>
</tbody>
</table>

Table 3: Statistical analysis (ANOVA) results of gene expression comparing PM2.5 with filtered air exposed lean and obese mice groups. FA-RC, filtered air - regular chow; EXP-RC, exposure concentrate air containing PM2.5 - regular chow; FA-HF, filtered air - high-fat diet; EXP-HF, exposure concentrate air containing PM2.5 - high-fat diet; ns, non-significant.

Risk factors and the development of ischemic heart disease is of importance to basic scientists and clinicians alike [27].

Chronic inhalation of PM2.5 causes an inflammatory reaction which increases the secretion of primary pro-inflammatory cytokines, such as interleukins (IL) 1 and 6, which are responsible for stimulating the expression of vascular adhesion molecules, VCAM-1, intracellular adhesion, ICAM-1, and cell surface glycoprotein, E-selectin [41,42]. Sun et al. [24] demonstrated increased plasma levels of inflammatory biomarkers, including soluble E-selectin, ICAM-1 and IL6, in C57BL6 mice plasma rendered diabetic by hyperlipidic diet ingestion.

Our data partially agree with the above-mentioned paper: the increased gene expression of IL-6 in the lung of obese mice is accompanied by the increase in VCAM-1 gene expression. However, we found no statistically significant change with respect to ICAM-1.
Toffoletto and Dr. MAG Martins for her helpful discussion and critical review of this manuscript.

Acknowledgment

This study was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Grant 2008/57717-6 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) grant 2008/57717-6. We thank Dr. O Toffoletto and Dr. MAG Martins for her helpful discussion and critical review of this manuscript.

References

Disclosures

None

Study limitations

This study was conducted under whole-body exposure conditions, i.e., animals were exposed to the particulate material through the respiratory tract. In addition, we work with the maximum daily PM$_{2.5}$ considered safe by WHO. However, since the animals were old and obese, the number of animals became reduced during the experiment.

Figure 2: Gene expression results plotted as boxplot. mRNA expression results are in Y axis and samples heart and lung of the animals group amplified to VCAM-1, ICAM-1, MMP-9, E-selectin, and IL-6 genes in X axis represented as FA-RC (filtered air - regular chow), EXP-RC (exposure concentrate air containing PM$_{2.5}$ regular chow), FA-HF (filtered air - high-fat diet), EXP-HF (exposure concentrate air containing PM$_{2.5}$ high-fat diet). The cross represents the mean value of each data set. The circle represents an outlier value.

