The Role of Irisin in Gestational Diabetes Mellitus: A Review

Charlotte Ramin¹, Helen L Barrett², Leonie K Callaway¹ and Marloes Dekker Nitert¹,²*

¹School of Medicine, The University of Queensland, Herston QLD, Australia
²UQ Centre for Clinical Research, The University of Queensland, Herston QLD, Australia

Corresponding author: Marloes Dekker Nitert MSc, PhD, UQCCR level 7, School of Medicine, The University of Queensland, Butterfield Street, Herston QLD 4029, Australia, Tel: +61733465418; E-mail: m.dekker@uq.edu.au

Received date: Jul 28, 2014, Accepted date: Sep 25, 2014, Published date: Sep 29, 2014

Copyright: © 2014 Ramin C, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Irisin is a newly described myokine that improves insulin resistance via the browning of white adipose tissue. Irisin appears to be secreted in response to exercise, providing a hormonal link between exercise and improved insulin sensitivity. Irisin expression has been demonstrated to increase after acute exercise and cold exposure in animal and human studies. Circulating irisin is decreased in metabolic disease states characterised by insulin resistance, such as type 2 diabetes mellitus, non-alcoholic fatty liver disease, chronic kidney disease and metabolic syndrome. The role of irisin in normal pregnancy as well as gestational diabetes mellitus is yet to be fully elucidated. To date, there are inconsistent reports regarding the changes in circulating irisin that occur in pregnancy and Gestational Diabetes Mellitus (GDM). Overall, it appears that irisin levels increase with pregnancy, and that the placenta expresses low levels of irisin. There is evidence that irisin levels are decreased in GDM pregnancy. With further research, irisin may prove a future therapeutic target or risk marker for GDM as well as other disease states characterised by insulin resistance.

Keywords: Irisin; Gestational diabetes mellitus; Insulin resistance; Pregnancy; Exercise; Skeletal muscle

Introduction

Gestational Diabetes Mellitus (GDM) is defined as a disease of glucose intolerance, which is first identified in pregnancy. A diagnosis of GDM is given to women who were normoglycaemic prior to pregnancy, usually based on abnormal results of a 2 hr 75 g oral glucose tolerance test (OGTT) at 24-28 weeks of gestation [1]. GDM currently complicates 17.8% of pregnancies worldwide [2]. It is a common condition, with significant adverse impacts on the health of mother and child. Maternal hyperglycaemia is associated with higher rates of both birth weight and cord blood C-peptide levels above the 90th percentile, primary caesarean section, clinical neonatal hypoglycaemia, shoulder dystocia and birth injury, premature delivery, neonatal hyperbilirubinaemia, preeclampsia and neonatal intensive care admission [3].

GDM also has long-term impacts on the child. Intrauterine exposure to the diabetic environment places children born to GDM mothers at an increased risk of obesity, the development of altered glucose tolerance and eventually type 2 diabetes mellitus (T2DM) in later life [4]. It is thought that exposure to the abnormal metabolic environment during gestation leads to dysfunctional in utero programming of the offspring’s metabolism [5]. Mechanisms by which this occurs include epigenetic modifications such as DNA methylation of genes involved in metabolism [6].

The mother is at significantly increased risk for both future T2DM and cardiovascular disease. Women with GDM have a 50% risk of developing type 2 diabetes in the 5 years following their pregnancy [4]. A prior diagnosis of GDM has been identified as an independent risk factor for cardiovascular morbidity [7].

The Pathophysiology of Gestational Diabetes Mellitus

GDM develops in women who cannot compensate for the normal metabolic changes of pregnancy. Normal pregnancy is associated with an approximate 60% decrease in insulin sensitivity in late pregnancy [8]. In order to ensure an adequate energy supply to the fetus, there is an increase in the levels of several hormones that oppose the effects of insulin, creating a state of insulin resistance. These hormones include human placental lactogen, placental growth hormone, oestrogen, progesterone, cortisol, human chorionic gonadotrophin and prolactin [9]. Normoglycaemia in pregnancy can only be maintained with a near doubling of basal insulin levels, as well as enhanced nutrient-stimulated insulin secretion [9]. In humans, it appears that enhanced function of existing beta cells accounts for the majority of the increase in insulin secretion, rather than hyperplasia [9,10]. The increased insulin resistance reverts with delivery of the placenta [11].

In GDM, an increased level of insulin resistance accompanied by an insufficient increase in insulin levels results in maternal hyperglycaemia. Insulin resistance in GDM women predates the pregnancy, and remains after delivery of the placenta, but results in overt diabetes in the face of the additional physiological insulin resistance of pregnancy. It is likely that enhanced compensatory insulin secretion is occurring in these women prior to gestation, leaving them with little reserve capacity to overcome the additional insulin resistance of pregnancy. This is especially true for obese women [12]: Obese women represented 13.7% of pregnant women in the general obstetric population but 25% of those diagnosed with GDM in the HAPO study [12]. Insulin resistance in obesity is likely partially caused by low-grade inflammation induced by white adipose tissue accretion [13].

The shared pathophysiology between GDM and T2DM is reflected in the shared genetic background of these conditions. It has been demonstrated that genetic variants in key genes lead to impaired beta
Exercise is known to improve insulin sensitivity [15]. This is partly due to the increased energy expenditure that occurs with exercise, which helps maintain body weight and prevents fat accumulation. However, regularly exercising muscle also displays differential expression of key genes involved in glucose metabolism and insulin sensitivity. Physical inactivity leads to insulin resistance in skeletal muscle through decreased GLUT4 levels. GLUT4 is the glucose transporter that is regulated by insulin. Lower GLUT4 expression results in decreased insulin stimulated glucose uptake [15,16]. Physical inactivity further alters the expression of over 4500 genes involved in glucose metabolism, which normalise after 4 weeks of retraining [16]. Some argue that the modern sedentary lifestyle, characterised by long periods of sitting, may in fact be the key risk factor for metabolic and cardiovascular disease [17,18].

Muscle-derived factors have been shown to act systemically, and one of the most studied of these is irisin. Irisin is a newly identified myokine that improves insulin sensitivity [19]. It is important to note that less than 8% of humans appear to have active brown fat [21].

Irisin: Initial Discovery

Bostrom et al. [19] first identified irisin as a novel myokine capable of inducing a brown adipose pattern of gene expression in white adipose tissue in vitro. In a mouse model, overexpression of irisin resulted in the browning of fat, a rise in metabolic rate and decreased insulin resistance [19]. Irisin secretion is induced by peroxisome proliferator-activated receptor alpha (PPARα). PGC1α is a key exercise inducible regulator of muscle metabolism. Increased PGC1α expression confers resistance to metabolic disease. Irisin was discovered in the search for mediators that would explain how muscle PGC1α levels affect whole body metabolism [18]. Irisin is secreted from muscle as the proteolytically cleaved product of FNDC5, and is present in human and mouse serum [19]. Specifically, irisin was demonstrated to increase uncoupling protein 1 (UCP1) levels in adipose tissue of mice, resulting in the production of heat rather than ATP. Such a pattern of gene expression is characteristic of brown adipose tissue. By dissipating excess energy intake as heat, metabolic rate is raised and provides resistance to obesity and related metabolic problems in mice.

Bostrom et al. [19] demonstrated that overexpression of irisin at 3-4 fold of normal serum levels through the use of adenoviral delivery to murine liver could decrease fasting insulin and improve oral glucose tolerance in mice fed a high fat diet. This was accompanied by an increase in UCP1 expression in the adipocytes of these mice, as well as an increase in metabolic rate as evidenced by increased oxygen consumption. Lee et al. [23] confirmed the in vitro effects of FNDC5 using human cervical white adipocytes. This fat depot is rich in beige adipocytes.

They found that treatment with irisin or FNDC5 resulted in UCP1 protein staining becoming strongly positive, and that this was associated with a rise in the metabolic rate of the adipocytes. The effect was most marked in adipocytes treated with irisin in combination with FGF21, which is another inducer of brown adipose tissue, and further increased with exposure to increasing noradrenaline concentrations, as would occur with cold exposure in vivo [23]. The effect was not as marked in subcutaneous fat tissue derived adipocytes, and not present in omentally derived adipocytes. Bostrom et al. [19] additionally demonstrated that irisin is required for the exercise-induced increase in UCP1 in adipose tissue that occurs in both mice and humans (REF).

The effect of irisin on myocytes has also been investigated *in vitro* [24]. In myocyte culture, irisin increases oxidative metabolism and mitochondrial uncoupling in myocytes, as well as increasing PGC1α levels and GLUT4 mRNA and protein levels. Such a discovery suggests a positive feedback loop whereby increased circulating irisin increases PGC1α levels, which in turn induces further irisin secretion. PGC1α is in fact the master regulator capable of increasing UCP1 protein in brown adipose tissue [25].

Although no downstream irisin receptor has been since identified, the effects of irisin are hypothesised to be mediated by increased peroxisome proliferator-activated receptor alpha (PPARα) [19]. PPARα is a transcription factor that is involved in enhanced β-oxidation of fatty acids and anti-inflammatory effects [26]. Subsequent research has looked at the role of irisin deregulation in metabolic disease, and its role in normal human metabolism. Figure 1 summarises the proposed action of irisin.

Irisin: After Exercise

A key role of irisin as suggested by Bostrom et al. [19] is in mediating the beneficial effects of exercise on human metabolism. A 2-fold increase in serum irisin levels in human subjects after 10 weeks of aerobic exercise was reported [19]. However, efforts to replicate these results have been inconsistent, muddling irisin’s role in mediating the benefits of exercise on insulin resistance in humans.

The great heterogeneity in study protocols and choice of subjects could possibly explain the variability in results. In general, serum irisin levels increase acutely after exercise in young and otherwise healthy individuals [23,27-30]. There is little evidence that mean circulating irisin levels change in response to extended protocols of regular exercise. Table 1 summarises animal studies looking at exercise-induced changes in irisin, and Table 2 outlines human studies.
Irisin in response to Exercise: Animal Studies

Several studies have used animal models to examine changes in irisin with exercise. Boström et al. [19] demonstrated that 7 days of swim training could induce UCP1 mRNA expression in inguinal white adipose tissue when compared to 7 days of rest in mice (n=10). However, injection of an anti-irisin antibody prior to exercise blocked this increase in UCP1. This implies that irisin is a critical signal to white adipose tissue to increase UCP1 expression after exercise [19]. Brenmoehl et al. demonstrated a near doubling of serum irisin levels in mice after acute submaximal treadmill exercise [31]. Interestingly, although 3 weeks of exercise increased skeletal muscle PGC1α mRNA over 30 fold, there was no change in FNDC5 mRNA or protein. Fain et al. also demonstrated that exercise training could increase serum irisin levels by 42%, but not skeletal muscle or adipose FNDC5 levels after a 16-20 week exercise intervention in pigs [32]. This study demonstrates an effect of chronic exercise. However, by only measuring 24hr after the final training session and not comparing to changes that occurred after the initial training session, it cannot be excluded that this is an effect of acute exercise.

Table 1: Animal studies investigating the effect of exercise on serum irisin and FNDC5/irisin expression

<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Design</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal studies demonstrating changes in irisin after exercise</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boström et al. [19]</td>
<td>5 12-week old B6 mice</td>
<td>1. 3 weeks of free wheel running 2. 10 days of swim training</td>
<td>1. Irisin increases by 65% in mice after exercise 2. Injection of anti-FNDC5 antibodies prior to exercise reduces induction of UCP1</td>
</tr>
<tr>
<td>Brenmoehl et al. [31]</td>
<td>Acute: 12 70-day old male DUhTP mice Long-Term: 12 DUhTP and 11 Coeval male mice</td>
<td>Acute: Submaximal treadmill test, with animals sacrificed immediately after. Long-Term: Three weeks of free wheel running or kept sedentary (coeval mice), sacrificed at 70 days old.</td>
<td>Acute: Mice had 1.9-fold higher serum irisin after treadmill test, with higher irisin protein in femoral muscle homogenate. No effect on FNDC5 mRNA Long: no effect on serum irisin, muscle FNDC5 mRNA/protein</td>
</tr>
<tr>
<td>Fain et al. [32]</td>
<td>5 exercised and 8 sedentary Rapacaz FHM pigs (defective LDL receptor) 8 exercised and 8 sedentary normal Yucatan pigs</td>
<td>Exercised pigs did 16-20 weeks exercise training of daily moderate treadmill training. Samples taken 24hrs after final exercise.</td>
<td>Plasma irisin rose by 42% in exercised FHM pigs, but not in normal pigs. No effect on muscle FNDC5 mRNA</td>
</tr>
<tr>
<td>Animal studies showing no change in irisin after exercise</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seo et al. [33]</td>
<td>Male Sprague Dawley Rates (n=5-7/group)</td>
<td>Mice fed either high or low fat diet. Exercised rats performed 4 weeks of 5day/week treadmill exercise. Age garlic extract (AGE) groups received 4 weeks AGE injections</td>
<td>AGE and exercise alone and in combination decrease weight and improve insulin resistance. Neither intervention alters serum irisin or skeletal muscle FNDC5.</td>
</tr>
</tbody>
</table>

Table 1: Animal studies investigating the effect of exercise on serum irisin and FNDC5/irisin expression

<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Design</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Studies demonstrating an increase in serum irisin after acute exercise</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huh et al. [27]</td>
<td>15 young moderately trained lean healthy males</td>
<td>8-week exercise intervention of 3 sprint sessions/week. Blood samples before and 30 mins after first and last session.</td>
<td>At first session, irisin was ±30 min after sprinting exercise.</td>
</tr>
</tbody>
</table>
After 8 weeks, exercise induction effect was lost.

Kraemer et al. [28]
7 young healthy lean males
5 young healthy lean females
Exercise test at 60% VO2 max for 90 min with samples taken at 0.54, 90 min, and after 20 min rest. Females completed protocol during mid-follicular and then mid-luteal phase of cycle.

Norheim et al. [29]
13 normglycaemic lean men age 40-65 years.
13 overweight pre-diabetic men age 40-65 years.
12-week intervention of 4x weekly strength and endurance training. Exercise test before and after intervention at 70% VO2 max.

Females completed protocol during mid-follicular and then mid-luteal phase of cycle.
Irisin é by ~20% in first 54 min of exercise, declined to baseline by 20 mins of rest, regardless of gender, or phase of menstrual cycle.

Lee et al. [23]
4 females and 6 males; lean, young and otherwise healthy
Maximal exercise test at VO2 max.
Submaximal 1 hr exercise test at 40% VO2 max.

Norheim et al. [39]
As described above. 12 weeks of exercise é expression of PGCα and FNDC5 mRNA in skeletal muscle.

Table 2: Evidence from human studies investigating the effect of exercise of irisin
<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Design</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2DM</td>
<td></td>
<td>All Participants subjected to glucose tolerance testing and venous blood samples taken. Identified 104 subjects with newly diagnosed T2DM and 104 age, sex and BMI matched controls for study population</td>
<td>Irisin has a significant inverse correlation with new onset T2DM</td>
</tr>
<tr>
<td>Choi et al. [40]</td>
<td>681 men and 1092 women recruited for health survey in rural Korea</td>
<td>Venous blood samples collected for irisin levels from participants.</td>
<td>Serum irisin levels were lower in those with T2DM, significant after adjusting for age and gender differences</td>
</tr>
<tr>
<td>Liu et al. [41]</td>
<td>96 T2DM individuals and 60 non-matched, non-diabetic healthy controls recruited from hospital in Singapore</td>
<td>Venous blood samples for lipids, irisin and eGFR and morning spot urine for albumin levels, as well as measurement body composition from each participant.</td>
<td>Irisin was lowest in those with Stage 5 CKD. No correlation was found between irisin and non-fat lean body mass.</td>
</tr>
<tr>
<td>Liu et al. [42]</td>
<td>365 T2DM subjects recruited from Singapore hospital</td>
<td>Venous blood samples for lipids, irisin and eGFR and morning spot urine for albumin levels, as well as measurement body composition from each participant.</td>
<td>Study 1: white adipose tissue FNDC5 expression decreased with obesity. In obese T2DM, white adipose tissue FNDC5 was decreased significantly. Study 2: Circulating irisin was decreased significantly in those with T2DM.</td>
</tr>
<tr>
<td>Moreno-Navarrete et al. [46]</td>
<td>Study 1: 35 non-obese, 56 obese, 6 non-obese T2DM and 28 obese T2DM recruited from hospital in Spain. Study 2: 76 Caucasian men from northern Spain</td>
<td>Study 1: Adipose tissue and Myocytes from participants were cultured and examined for mRNA and protein levels including FNDC5 and PGC1α. Serum irisin samples obtained from 29 obese participants. Study 2: participants underwent OGTT and anthropometric measurements</td>
<td>Study 1: white adipose tissue FNDC5 expression decreased with obesity. In obese T2DM, white adipose tissue FNDC5 was decreased significantly. Study 2: Circulating irisin was decreased significantly in those with T2DM.</td>
</tr>
<tr>
<td>Kuridova et al. [33]</td>
<td>Study 1: 29 lean healthy controls, 29 healthy overweight/obese individuals, 25 individuals with impaired glucose tolerance, 16 with new onset T2DM Study 2: described in Table 1.</td>
<td>Subcutaneous adipose tissue collected from abdominal fat biopsy and cultured. Myocytes collected from vastus lateralis biopsy, and cultured with 100μ palmitate and 5.5-20mM glucose. Circulating irisin from venous blood samples.</td>
<td>Circulating irisin decreased by 40% in T2DM, unaltered in other states. In T2DM, Adipose tissue, but not muscle displayed a ~40% decrease in FNDC5 expression. T2DM myocyte FNDC5 expression in vitro was decreased by palmitate and glucose.</td>
</tr>
<tr>
<td>Metabolic Syndrome</td>
<td></td>
<td>Venous blood samples, clinical measurements and lifestyle information obtained. Serum irisin levels significantly reduced in those with metabolic syndrome and raised fasting plasma glucose.</td>
<td>Irisin levels were significantly higher in those with the metabolic syndrome.</td>
</tr>
<tr>
<td>Yan et al. [47]</td>
<td>1115 community recruited Chinese individuals with central obesity</td>
<td>Venous blood samples, clinical measurements and lifestyle information obtained. Serum irisin levels significantly reduced in those with metabolic syndrome and raised fasting plasma glucose.</td>
<td>Irisin levels were significantly higher in those with the metabolic syndrome.</td>
</tr>
<tr>
<td>Hee Park et al. [48]</td>
<td>151 Caucasian and African American subjects</td>
<td>Fasting venous blood samples, clinical measurements and lifestyle information obtained. Serum irisin levels were significantly lower in the NASH, NAFL and obese group compared to lean. Lower irisin was associated with higher intrahepatic triglyceride content, and higher irisin with portal inflammation.</td>
<td>Irisin levels were significantly lower in subjects with increasing intrahepatic triglyceride content.</td>
</tr>
<tr>
<td>NAFLD</td>
<td></td>
<td>Venous blood samples, clinical information were obtained. OGTT and intrahepatic triglyceride content were determined.</td>
<td>Serum irisin levels decreased with increasing intrahepatic triglyceride content.</td>
</tr>
<tr>
<td>Polyzos et al. [49]</td>
<td>24 lean controls, 28 obese controls, 15 NAFL, 16 NASH</td>
<td>Fasting venous blood samples, liver biopsy from NAFLD/NASH individuals, clinical information and measurements including BMI were obtained. Serum irisin levels were significantly lower in the NASH, NAFL and obese group compared to lean. Lower irisin was associated with higher intrahepatic triglyceride content, and higher irisin with portal inflammation.</td>
<td>Irisin levels were significantly lower in the NASH, NAFL and obese group compared to lean. Lower irisin was associated with higher intrahepatic triglyceride content, and higher irisin with portal inflammation.</td>
</tr>
<tr>
<td>Zhang et al. [50]</td>
<td>296 obese Chinese adults</td>
<td>Venous blood samples, clinical information were obtained. OGTT and intrahepatic triglyceride content were determined.</td>
<td>Serum irisin levels decreased with increasing intrahepatic triglyceride content.</td>
</tr>
<tr>
<td>Chronic Kidney Disease</td>
<td></td>
<td>Morning fasting venous blood samples were collected. Serum irisin levels are lower in subjects with Stage 5 CKD.</td>
<td>Serum irisin levels are lower in subjects with Stage 5 CKD.</td>
</tr>
<tr>
<td>Wen et al. [44]</td>
<td>38 patients with Stage 5 CKD (excluding those with other health)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In summary, the balance of the evidence suggests that an acute increase in circulating irisin levels occurs during and immediately on completion of high intensity acute exercise in young healthy lean and physically active people. In older people, those with baseline insulin resistance, or sedentary people, it appears that a degree of re-training is required before serum irisin increases can be observed after exercise. There is minimal evidence that FNDC5 mRNA expression is altered in skeletal muscle, suggesting mechanisms other than increased transcription account for the rise in circulating irisin.

Irisin: Thermoregulation

There is currently renewed interest in the role of brown adipose tissue in humans. Although humans have very low levels of brown adipose tissue, there is a current appreciation of the existence of ‘beige’ adipocytes that can be recruited to allow for non-shivering thermogenesis in response to cold exposure. Lee et al. [23] measured circulating irisin levels in young lean individuals whilst exposing them to graded stepwise cold exposure from 24-12°C. Serum irisin levels...
rose in subjects in correlation with the extent of shivering. They postulated that irisin is secreted from shivering muscle as a signal to white adipose tissue to increase thermogenesis, and thus increase the capacity for non-shivering thermogenesis [23]. In addition to this, serum irisin levels have been demonstrated to increase by over 25% during the luteal phase of the menstrual cycle, when a rise in core body temperature in women occurs [39]. These results suggest irisin may act as a signal to adipocytes to increase heat production in response to various stimuli.

Irisin: Metabolic Disease

Knowledge of the mechanism of action of irisin suggest that low levels may be a risk factor for developing insulin resistance and metabolic disease. Indeed, low levels have been demonstrated in various metabolic disease states, including type 2 Diabetes Mellitus (T2DM), chronic kidney disease (CKD), non-alcoholic fatty liver disease (NAFLD), obesity and the metabolic syndrome. However, there have again been inconsistencies in these results.

Several studies have demonstrated lower irisin in T2DM. Serum irisin levels were significantly lower in 104 individuals with newly diagnosed and untreated T2DM as compared to age, gender and BMI matched controls [40]. Decreased serum irisin levels were also reported in 96 individuals with T2DM receiving various medications when compared to 60 individuals with normal glucose tolerance [41] as well as in obese T2DM patients. Decreases in irisin levels in T2DM subjects were amplified by renal insufficiency, with the reduction most marked in those with stage 5 CKD [42]. This is in keeping with reports regarding those with renal disease [43,44]. Some have postulated that muscle wasting in end stage kidney disease accounts for this effect, as muscle mass is the main determinant of circulating irisin levels in humans [27]. Interestingly, no correlation exists between irisin levels and percentage of non-fat lean body mass [40]. The question of the importance of muscle will be explored further in a study on the effects of sarcopenia on circulating irisin [45]. A 40% decrease in circulating irisin levels in T2DM subjects (n=6) was associated with a similar decrease in white adipose tissue but not muscle irisin expression [34]. Indeed, it was demonstrated that muscle from T2DM patients actually had the highest levels of irisin secretion in cell culture, but that irisin secretion decreased with increasing glucose concentration from 5.5 to 20 mM in combination with 100uM palmitate. They postulated that diabetic environment inhibited irisin secretion in vivo.

Irisin levels in pre-diabetic states of insulin resistance such as metabolic syndrome, are less clear. In 1115 Chinese adults with central obesity, circulating irisin levels were inversely correlated with the metabolic syndrome, particularly impaired fasting glucose [46,47]. Irisin levels were negatively correlated with waist circumference, but not with BMI. In contrast with these results, in a community study of 151 Caucasian and African American individuals, serum irisin was significantly increased in those with the metabolic syndrome [48]. Key differences between the two studies are the level of central obesity, diagnosis of metabolic syndrome and ethnicity: in the Chinese study all individuals had central obesity and over 60% met the criteria for the metabolic syndrome, whereas only 27.8% of participants in the Caucasian/African American study did.

Irisin levels have also been studied in NAFLD, which is also characterised by insulin resistance. Serum irisin levels were lower in NAFLD, those with non-alcoholic steatohepatitis and obese individuals when compared to lean controls [49,50].

Chronic Kidney Disease is associated with altered metabolism. Irisin levels are significantly decreased in individuals with stage 5 CKD compared to age matched controls [44]. Similarly, decreased levels of irisin were reported in 532 subjects with CKD, with serum irisin levels correlating with disease severity [51]. As previously discussed, it is unclear as to the reason behind this decrease.

It can be seen there is a clear association between decreased serum irisin levels and metabolic disease states characterised by insulin resistance. Whilst laboratory studies have established a causative role for irisin in metabolic regulation, evidence from human studies is correlational only. Further research will be required to determine wether the decreased irisin levels indeed have a causative role in metabolic disease.

Irisin: Pregnancy and Gestational Diabetes Mellitus

In normal pregnancy, serum irisin levels are altered. Garces et al. found serum irisin levels to be higher in pregnancy. Kuzninicki et al. reported a significant decrease in irisin levels 3 months postpartum in both women with gestational diabetes mellitus (GDM) and controls with normal glucose tolerance. These two studies suggest that the placenta and the pregnant state may contribute to an increase in circulating irisin levels. Irisin has been localised via immunohistochemical staining to the cytoplasm of decidual, cytотrophoblast and syncytiotrophoblast of the placenta [39].

Placental expression of irisin raises questions as to wether it is secreted into the fetal circulation, where it could have important effects on the growth and development of the fetus. This needs further exploration. However, Ebert et al. found no decrease in serum irisin immediately after delivery or 4.3 years later, and calculated that the irisin concentration in the placenta was only 53.3 μg/g total protein.

It is the important to note that in the long follow up time of 4.3 years, other influences may contribute to the regulation of irisin levels. However, Piya et al. also reported no significant differences in serum irisin levels between pregnant and a non-pregnant women [52]. Given that muscle and adipose tissue are likely to be key contributors to the pool of circulating irisin in these women, it would be interesting for future studies to include an analysis of irisin levels in muscle and fat biopsies.

GDM is a metabolic disease characterised by insulin resistance, and as such, alterations in irisin levels may occur. Three studies have found a decrease in irisin levels in GDM pregnancies. A description of study design and findings for studies looking at irisin in pregnancy can be found in Table 4. Yuksel et al. reported lower mean serum irisin levels in GDM compared to controls. These results were supported by Kuzmicki et al. who demonstrated lower maternal serum irisin concentrations at time of oral glucose tolerance testing in women with GDM compared to age, BMI and gestational age matched women. As mentioned, irisin levels had decreased 3 months post-partum in both groups, with no persisting differences [53]. It has also been demonstrated that in addition to serum, breast milk from mothers with GDM has significantly lower irisin levels, representing another possible mechanism by which GDM has long term effects on the metabolism of the offspring [54,55].
Table 4: Summary of Studies looking at changes in irisin levels in pregnancy related complications

<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Design</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gestational Diabetes Mellitus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yuksel et al. [55]</td>
<td>20 GDM women and 20 control women, all planning to deliver via Caesarean Section. No baseline difference in age or BMI between groups.</td>
<td>Venous samples maternal serum obtained prior to delivery, umbilical cord blood collected after delivery.</td>
<td>Lower mean maternal serum irisin in GDM. No difference in cord blood irisin.</td>
</tr>
<tr>
<td>Kuzmicki et al. [53]</td>
<td>130 GDM women and 140 normal glucose tolerance women matched for age, gestational age and BMI.</td>
<td>Venous samples maternal serum collected at time of OGTT, then at 10-12 wks postpartum, and at 3 months postpartum.</td>
<td>Lower mean maternal serum irisin in GDM. Irisin drops to same baseline in all women 3 months post-partum</td>
</tr>
<tr>
<td>Aydin et al. [54]</td>
<td>15 lactating GDM, 15 lactating control, 14 non-lactating women.</td>
<td>Breast milk and maternal serum sampled on days 1, 7 and 15 of lactation.</td>
<td>Irisin increased significantly with maturation of the milk. Plasma and breast milk irisin levels were lower in GDM compared to healthy lactating and non lactating women</td>
</tr>
<tr>
<td>Ebert et al. [56]</td>
<td>Study 1: 74 GDM patients and 74 healthy gestational age matched controls Study 2: 40 healthy uncomplicated pregnancies</td>
<td>1: Maternal serum sampled after an overnight fast at OGTT, then at follow up ~1576 days post partum 2: Fasting sample maternal serum prior to and then 24hr after delivery, umbilical cord blood and placental tissue samples.</td>
<td>1: No significant difference between groups, however fasting insulin predicts irisin levels in GDM women 2: No significant changes in irisin 24hr post delivery. Irisin is 53.3μg/g placental tissue protein.</td>
</tr>
<tr>
<td>Piya et al. [52]</td>
<td>34 non-obese women, 39 obese women and 18 GDM women.</td>
<td>Maternal serum and CSF samples taken prior to caesarean section. Cord blood taken at time of delivery.</td>
<td>No significant difference in irisin between groups No alterations in umbilical cord irisin Significantly higher CSF irisin in GDM women</td>
</tr>
<tr>
<td>Preeclampsia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garces et al. [39]</td>
<td>Study 1: 40 healthy women and 10 women who developed preeclampsia taken from a larger longitudinal cohort study Study 2: 20 healthy menstruating women Study 3: Placental tissue from 38 weeks gestation</td>
<td>1: venous blood samples at various points through pregnancy 2: venous blood samples during follicular and luteal phase of menstrual cycle 3: Immunohistochemical staining performed</td>
<td>1: Serum irisin increases by 16% from mid to late pregnancy in all groups Serum irisin is 49% higher in third trimester in healthy compared to preeclamptic women 2: Serum irisin levels are 26% higher in the luteal phase of cycle. 3: FNDC5 stains to the cytoplasm of decidual, cytotrophoblasts and sycnotrophoblasts.</td>
</tr>
<tr>
<td>Idiopathic IUGR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caglar et al. [57]</td>
<td>15 women with idiopathic IUGR at third trimester and 15 healthy controls</td>
<td>Maternal blood collected prior to delivery and fetual umbilical cord blood collected with delivery</td>
<td>No difference in maternal serum irisin level Umbilical artery irisin levels higher in normal pregnancy and correlated with birth weight</td>
</tr>
</tbody>
</table>

However, the evidence has not been consistent. Ebert et al. [56] found no significant difference between maternal fasting serum irisin levels between GDM patients and gestational-age matched controls at both the time of oral glucose tolerance testing and at a follow up a mean of 1576 days (or 4.3 years) later [56]. In contrast with all previous studies, Piya et al. [52] found higher serum and CSF irisin levels in both obese pregnant and GDM pregnant women compared to non-obese controls. This led to speculation as to wether irisin had a central role in metabolism, as irisin was found to be present in hypothalamic tissue where it co-localised with Neuropeptide-Y, a key appetite regulating hormone [52]. No studies have reported a difference between cord blood irisin levels in GDM [52,55].
Irisin has been studied in relation to both preeclampsia and intrauterine growth restriction. Garces et al. [39] found that serum irisin levels increased in a group of 40 women throughout pregnancy, but in 10 women who developed preeclampsia, third trimester levels were 49% lower [39]. No significant difference has been found between maternal serum irisin levels in idiopathic intrauterine growth restriction compared to uncomplicated pregnancy [57]. It was however demonstrated that umbilical arterial irisin levels were significantly increased in the control group, possibly reflecting larger fetal body mass. Further research is required to confirm these results.

It can be seen that there is still conflicting evidence as to the exact changes in irisin that occur in GDM, and that further research in this area is warranted. Again, this research is of a correlational nature only, and a causative role for irisin in the pathogenesis of these diseases is yet to be established.

Conclusion

Irisin is a newly discovered myokine that acts to increase UCP1 expression in white adipose tissue. Such an alteration in gene expression ‘brows’ the adipose tissue, and protects against insulin resistance in in vitro experiments and animal models. Further research is required to determine the importance of irisin to human metabolism and the factors that regulate irisin expression in humans. Preliminary research indicates that irisin is decreased in human metabolic disease states characterised by insulin resistance including pregnancy complications such as GDM.

References

