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Abstract

Diabetes mellitus (DM) is a chronic disease characterized by hyperglycemia and its prevalence is rising globally.
Prolonged exposure to uncontrolled chronic hyperglycemia can lead to various complications in the eye including
cataract. Cataract is characterized by cloudiness or opacification of the eye lens which is the leading cause of sight
loss and visual disability. It has been reported that diabetes mellitus is a major problem in the management of
blindness and cataract surgery.
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Introduction
In recent years, various studies suggested that oxidative stress may

play a role in the pathogenesis of both type 1 and type 2 DM and its
impact on lens transparency [1-5]. Oxidative stress results mainly by
an increased production of free radical and a sharp reduction of
antioxidant defense [6]. Antioxidants, that inhibit the destructive
effects of oxidants, involve both non-enzymatic, such as ferritin,
ascorbate, glutathione and vitamins A & E, and enzymatic strategies
such as catalase (CAT), glucose-6-phosphate dehydrogenase (G6PD),
glutathione peroxidase (GSH-Px), glutathione-S-transferase and
superoxide dismutase (SOD) [7,8].

Various studies reported that the persistent hyperglycemia in both
types of diabetic patients produces excess ROS leading to increased
oxidative protein damage and lipid peroxidation, which would be

related to the pathogenesis of diabetic’s complications including
cataract [9-11]. Furthermore, a number of studies have evaluated the
oxidant markers in diabetes and its complications but with inconsistent
results. While some studies reported increased MDA, a marker of lipid
peroxidation and lowered activities of SOD, CAT and GSH-Px in
patients of DM [10-13], others have reported no change in indices of
oxidative stress [14-16].

Another mechanism involved in sugar cataract formation is the
metabolic imbalance of glucose through polyol pathway in diabetic
patients. The polyol pathway involves two enzymes: aldose reductase
AR; EC 1.1.1.21) and sorbitol dehydrogenase (SDH; EC 1.1.1.14). AR is
a member of aldo-ketoreductase family and the first and the key
enzyme of the polyol pathway. It reduces glucose to sorbitol using
nicotinamide adenine dinucleotide phosphate (NADPH) as a cofactor.
Sorbitol is then metabolized to fructose by SDH using NAD+ as a
cofactor [17].

Under hyperglycemic conditions in diabetic patients, there is an
increased flux of glucose through the polyol pathway which is reduced
to sorbitol catalyzed by AR. The accumulation of sorbitol in the lens,
has been linked to the development of diabetic cataract [18]. Ng et al.
[19] found the reduction of SDH in hyperglycemic patients, but the
results obtained by Omotosho et al. [20] observed that the SDH is
elevated in DM but not in diabetic cataract patients.

Several studies have investigated the role of oxidative stress
[13,21,22], and the polyol pathway in the pathology of diabetic
retinopathy and diabetic cataract [23-25], but, the prevalence of these
two pathways in either type of diabetes mellitus was not studied clearly.

Aim
Therefore, the present study would investigate the prevalence of

antioxidant status and polyol pathway in either type 1 or type 2 or in
both and in the diabetic cataract. In addition, the present study also
would investigate the relationship between two pathways in the ability
of occurrence of diabetic cataract.

Alwadani, J Clin Exp Ophthalmol 2016, 7:3 
DOI: 10.4172/2155-9570.1000558

Research Article Open Access

J Clin Exp Ophthalmol
ISSN:2155-9570 JCEO, an open access journal

Volume 7 • Issue 3 • 1000558

Journal of Clinical & Experimental 
OphthalmologyJo

ur
na

l o
f C

lin
ica

l & Experimental Ophthalm
ology

ISSN: 2155-9570



Materials and Methods

Chemicals
Kits required for determination of different parameters under study

were purchased from Sigma/Aldrich Chemical Company, St. Louis,
MO, USA.

Subjects
The present study included 170 subjects who are divided into 4

groups, group 1 represents type I diabetic patients (n=50) without
cataract, group 2 represents type II diabetic patients (n=50) without
cataract, group III represents diabetic cataract patients (n=20), and
group IV represents the age and gender matched normal control
subjects (n=50). The diabetic patients with and without cataract
attending the Endocrine and Diabetes out-patient clinic Unit at King
Fahd Hospital, Hofuf, Al-Ahsaa, Saudi Arabia referred to the
Ophthalmology Clinic to evaluate the diabetic eye complications. The
age of both patients and control subjects were between 25-50 years and
the period of the diabetes mellitus was 5 years or more. Subjects >50
years old, or who had a prior history of uveitis, ocular trauma or
previous eye surgery for other cause than cataract, such as vitrectomy,
were not included.

Anthropometry
All patients answered a standard questionnaire and underwent

physical examination. Weight was measured using commercial scale
‘‘Seca Germany’’ with an accuracy of ± 100 g. Subjects were weighed in
light outdoor clothes without shoes and height was recorded. Body
mass index (BMI) was calculated as ‘‘Body weight (kg)/height in
meters2”. Sitting blood pressure was measured twice on the right arm
to the nearest 2 mmHg after a 10 min rest using a standard mercury
sphygmomanometer (phases I and V of Korotkoff’s sounds).

Eye examination
Eye examination included a visual acuity test (log MAR notation),

refraction, tonometry and biomicroscopy of the anterior and posterior
segments. Cataract was diagnosed based on the Lens Opacities
Classification System II (LOCSII) criteria [26] and any grade of lens
opacity was classified as the patient having cataract.

Ethical considerations
Study protocol was approved from authorities at King Faisal

University. Eligible subjects signed a written consent.

Blood sample
Fasting blood samples were freshly withdrawn from all subjects

under investigation on heparin after an overnight fasting inpatient
King Fahd hospital. These blood samples were immediately transferred
from the King Fahd Hospital and Medical Center at King Faisal
University to our laboratory at the College of Medicine, King Faisal
University in an ice box. Each sample was centrifuged at 4000 rpm and
separate plasma from RBCs. The plasma was kept at –80°C until used.
The RBC was taken and lysed with ice-cold water and the clear lysate
obtained after spinning down the cell debris at 8500 g for 10 min at
4°C was used for the assays

Since human red blood cells (RBC) have the metabolic capacity for
glucose sorbitol-fructose conversion [27], the present study would
determine the most biochemical parameters related to cataract
formation in red blood cells.

Laboratory methods
Estimation of fasting blood glucose (FBG): Blood glucose

concentration was estimated spectrophotometrically (Boeco S-20
Spectrophotometer, Hamburg, Germany) through application of
method described by Freund et al. [28] by using enzymatic test kit
(glucose oxidase). The results were expressed as mg/dL.

Estimation of hemoglobin (Hb %): Hb was estimated
spectrophotometrically (Boeco S-20 Spectrophotometer, Hamburg,
Germany) according to the method of Baure [29]. The values are
expressed as g/dL.

Determination of erythrocytes oxidative stress markers
Determination of malondialdehyde level: Malondialdehyde (MDA)

concentrations, the end product of lipid peroxidation of erythrocytes
were measured spectrophotometrically at 532 nm as the product of the
reaction with thiobarbituric acid (TBA) using the method of Dahle et
al. [30]. Results were expressed in nmol/g Hb.

Determination of superoxide dismutase (SOD) activity (SOD; EC
1.15.1.1): Halliwell and Gutteridge method [31] was used to estimate
the total SOD activity spectrophotometrically (Boeco S-20
Spectrophotometer, Hamburg, Germany) in hemolysate. The results
were expressed as U/g Hb.

Determination of glutathione peroxidase (GSH-Px; EC 1.11.1.9):
The erythrocyte activity of GSH-Px was estimated
spectrophotometrically (Boeco S-20 Spectrophotometer, Hamburg,
Germany) by using the method described by Paglia and Valantine [32].
The results were expressed as mU/g Hb.

Determination of glutathione reductase (GSSG-R; ECEC 1.6.4.2):
Erythrocyte GSSG-R activity was determined spectrophotometrically
(Boeco S-20 Spectrophotometer, Hamburg, Germany) by using the
method described by Worthington and Rosemeye [33]. The results
were expressed as mU/g Hb.

Determination of catalase activity (CAT; EC 1.11.1.6): CAT activity
was measured spectrophotometrically (Boeco S-20 Spectrophotometer,
Hamburg, Germany) using a standard CAT assay through following
the decomposition rate of H2O2 at 240 nm according to the method of
Aebi [34]. The results were expressed as U/g Hb.

Determination of reduced glutathione (GSH): GSH was assayed by
reaction with dithionitrobenzenoic acid (DTNB) as described by
Anderson [35]. The product was quantified spectrophotometically at
416 nm. The results of GSH were expressed as nmol/g.

Polyol pathway markers
Determination of blood aldose reductase (AR) activity: The

hemolysate AR activity was measured spectrophotometrically
according to the method described by Suryanarayana et al. [36], using
Boeco S-20 Spectrophotometer, Hamburg, Germany. One unit was
defined as µmol NADPH/g Hb

Determination of blood Sorbitol dehydrogenase (SDH) activity: The
hemolysate SDH activity was measured spectrophotometrically by
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applying the method of Vaca et al. [37], using Boeco S-20
Spectrophotometer, Hamburg, Germany. One unit was defined as U/g
Hb.

Statistical analysis
Data were analyzed with the SPSS 16.0.7 (SPSS, Chicago, IL, USA)

for Microsoft Windows XP (Redmond, WA, USA) statistical software
package. Group comparison was performed by using a one-way
analysis of variance (ANOVA). Values are expressed as mean ±
standard deviation, and p<0.05 was considered statistically significant.

Results

Basic characteristics
Table 1 displays the basic characteristics of both diabetic patients,

diabetic-cataract patients and their controls. Age and gender
distribution and body mass index showed no significant difference
between the various groups. There is a significant variation in glucose
levels between the patients and control subjects.

Characteristics Subjects

 Type-I
(N=50)

Type-II
(N=50)

Diabetic Cataract
(N=20)

Control
(N=50)

- Gender:     

Males (%) 37 (74) 34 (68) 15 (75) 36 (72)

Females (%) 13 (26) 16 (32) 5 (25) 14 (28)

- Age in years
(mean ± SD)

25.9 ± 5.9 26.3 ± 7.7 26.1 ± 6.2 25.6 ± 6.2

-Diabetes duration (years)
(mean ± SD)

14.6 ± 4.2

 

15.1± 4.8

 

9.9 ± 3.6

 

None

 

- Systolic blood pressure (mmHg)
(mean ± SD)

120.3 ± 21.5 121.6 ± 22.4 122.6 ± 23.2  119.6 ±19.6

-Diastolic blood pressure (mmHg)
(mean ± SD)

78.3 ± 10.3 79.4 ± 11.6 22.1 ± 5.31 21.9 ± 4.94

-Body mass index! (mean ± SD)  78.9 ± 10.9  77.6 ± 9.9 22.4 ± 5.41 22.3 ± 5.24

-Insulin dose U/kg/day)
(mean ± SD)

0.73 ± 0.28 12.7 ± 4.0 0.95± 0.31 None

-Hemoglobin
(gm %)
(mean ± SD)

 12.5 ± 4.1

 

12.4 ± 3.9 12.8 ± 3.4

-Fasting blood glucose (mg/dl)
(mean ± SD)

 171.7 ± 10.9a  236 ± 16.5a,b  89.3 ± 8.7  245.9 ± 15.7a,b

SD=Standard Deviation
! Body mass index=weight in Kg/height in meter2.
aStatistically significant of diabetic and diabetic cataract patients versus control subjects
bStatistically significant of type-I and diabetic cataract patients versus type-II patients

Table 1: Basic characteristics of the study subjects.

Oxidative stress markers
Table 2 demonstrates the erythrocytes superoxide dismutase (SOD),

catalase (CAT), glutathione peroxidase (GSH-Px)), and glutathione
reductase (GSSG-R) activities in fasting blood samples from type-I,
type-II, diabetic cataract and their controls. The activities of
erythrocytes SOD, CAT, GSH-Px and GSSG-R were significantly
decreased in all patients compared to their control. The activities of
these enzymes were significantly decreased in both type-I and diabetic
cataract patients compared to type-II patients.

Table 3 demonstrates the erythrocytes activities of aldose reductase
(AR) and sorbitol dehydrogenase (SDH) in diabetic patients without
and with cataract. The activity of erythrocytes AR was significantly

elevated in hemolysate of types 1 & 2 diabetic patients without cataract
and diabetic cataract compared to their controls. The AR activity was
significantly increased in type 1 diabetic patients without cataract and
diabetic cataract patients compared to that of type 2 diabetic patients
without cataract. The erythrocyte activity of SDH was significantly
increased in all patients groups compared to their control. The
hemolysate SDH activity of type 1 diabetic patients without cataract
and of diabetic cataract patients was significantly elevated compared to
that of type 2 diabetic patients without cataract.

Subjects SOD
U/g Hb

CAT
(U/g Hb)

GSH-Px
(U/g Hb)

GSSG-R
(U/g Hb)

Controls (no.) (50) (50) (50) (50)
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Mean ± SD 20.8 ± 5.1 43.9 ± 10.4 41.4 ±12.6 52.4 ±11.6

Type-I DM (no.) (50) (50) (50) (50)

Mean ± SD 9.9 ± 2.6 20.3 ± 6.1 29.6 ± 7.4 28.1 ± 7.9

P 0.0001a,b 0.0001a,b 0.0001a,b 0.0001a,b

Type-II DM (no.) (50) (50) (50) (50)

Mean ± SD 14.7 ± 2.6 26.8 ± 3.8 36.3 ±9.62 33.9 ±9.4

P 0.0001a 0.0001a 0.0001a 0.0001a

Diabetic-cataract
(no.)

(20) (20) (20) (20)

Mean ± SD 10.2 ± 3.8 18.9 ± 4.9 27.3 ± 8.9 26.6 ± 6.6

P 0.0001a,b 0.0001a 0.0001a,b 0.0001a,b

SD=Standard Deviation. aStatistically significant of diabetic and diabetic cataract
patients versus control subjects. bStatistically significant of type-I and diabetic
cataract patients versus type-II patients

Table 2: Erythrocytes superoxide dismutase (SOD), catalase (CAT),
glutathione peroxidase (GSH-Px) and glutathione reductase (GSSG-R)
activities among type-I, type-II diabetic patients without cataract,
diabetic cataract and control subjects.

Subjects Aldose reductase
(µmol NADPH/g Hb)

Sorbitol dehydrogenase
(U/g Hb)

Controls (no.) -50 -50

Mean ± SD 18.3 ± 7.2 17.6 ± 6.6

Type-I DM (no.) -50 -50

Mean ± SD 36.5 ± 11.6 20.2 ± 7.8

P 0.001a,b 0.001a,b

Type-II DM (no.) -50 -50

Mean ± SD 24.9 ± 9.7 18.9 ± 8.4

P 0.001a 0.05a

Diabetic-cataract (no.) -20 -20

Mean ± SD 40.3 ±14.9 22.9 ± 9.7

P 0.001a,b 0.0001a,b

SD=Standard Deviation. The results are represented by Mean ± SD
aStatistically significant of diabetic and diabetic cataract patients versus control
subjects
bStatistically significant of type-I and diabetic cataract patients versus type-II
patients

Table 3: Erythrocyte aldose reductase and sorbitol dehydrogenase
activities in two types of diabetic patients without cataract, diabetic
cataract patients and the control subjects.

The concentrations of MDA and GSH are shown in Figures 1A and
1B respectively. MDA concentration was significantly increased
(Figure 1A), while GSH level was significantly reduced (Figure 1B) in
all patients’ groups compared to the corresponding values of control
group. In addition, the MDA level was significantly elevated, while

GSH level was significantly reduced in type I diabetic patients without
cataract and diabetic cataract compared to the values of type II
diabetic patients (P<0.001).

Figure 1A: Erythrocytes levels of malondialdehyde (MDA nmol/g
Hb) in control, type-I DM without cataract, type-II DM without
cataract and diabetic cataract. Results are expressed as mean ± SD.
aStatistically significant of diabetic and diabetic cataract patients
versus control subjects. bStatistically significant of type-I and
diabetic cataract patients versus type-II patients.

Figure 1B: Erythrocytes levels of glutathione (GSH mg/g Hb) in
control, type-I DM without cataract, type-II DM without cataract
and diabetic cataract. Results are expressed as mean ± SD.
aStatistically significant of diabetic and diabetic cataract patients
versus control subjects bStatistically significant of type-I and
diabetic cataract patients versus type-II patients

Discussion
Many biochemical pathways have been suggested to study the

pathogenesis of diabetic cataract in patients with hyperglycemia [1].
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Among these, the oxidative stress and the polyol pathway which have
been extensively studied.

Several studies have found that hyperglycemia is associated with
enhanced production of ROS leading to oxidative stress in diabetic
patients [38-41]. The present data is consistent with these studies and
provides further evidence of increased production of ROS with
depletion of antioxidants and increased lipid peroxidation (MDA
levels) in both types of diabetic patients without cataract as well as
diabetic cataract. However, no data are available on the prevalence of
oxidant status and polyol pathway in either type of DM.

The present study showed that the activities of SOD, CAT, GSH-Px
and GSSG-R were significantly decreased (Table 2), while MDA level
was significantly increased (Figure 1A) in all diabetic patients
compared to the results of normal subjects. These findings were
supported previously in which CAT and SOD activities were decreased
in blood of diabetic animals [10,42-44]. The reduction of antioxidant
enzymes in the present study may be due to either the inactivation or
inhibition of these enzymes by the increased production of ROS during
diabetes [45-47], or the excess production of malondialdehyde (MDA)
which have additional toxic effects on proteins including enzymes.
MDA can modify the amino acid side chain of these enzymes results in
a partial or complete loss of functions of their functions leading to
decrease in their activities [48]. In addition, the elevation of MDA
(Figure 1A) in the present study may be also attributed the excess
production of ROS in hyperglycemia through autoxidation and
nonenzymatic protein glycation which promote erythrocytes lipid
peroxidation leading to excess production of MDA [49].

In hyperglycemic patients of the present study, the significant
reduction in erythrocytes SOD activity may be attributed to the
progressive glycation of SOD [50]. In addition, the reduction of
erythrocytes CAT and GSH-Px activities in the present study may be
attributed to the reduction of SOD activity (Table 2). This finding is
supported by the studies of Kono et al. [51], and Blum et al. [52], which
found that the decrease in SOD activity may lead to increase level of
superoxide radicals (O2.-) which will cause the inactivation of CAT
and GSH-Px. The present data is also confirmed by the results obtained
by Du et al. [53], who found that the elevated glucose concentration
enhances the production of superoxide anion (O2.-) by retina and
retinal cells.

Furthermore, in hyperglycemia, the increased AR activity may
impair antioxidative defense enzymes, including SOD, GSH-Px, CAT,
and GSSG-R in diabetic patients. The mechanism of the impaired
effect of AR on these antioxidative enzymes may be attributed to that
AR may affect gene expression of such antioxidative enzymes in
diabetic subjects [54,55].

Glutathione (GSH) has many important functions, such as it acts as
a direct cellular antioxidant for removing oxidative species, as an
essential co-substrate for GSH-Px, and as a cofactor for many enzymes
[56]. The present data observed that GSH concentration was decreased
in erythrocytes of both types of DM groups and diabetic cataract
subjects compared to the non-diabetic subjects (Figure 1B). The
depletion of GSH may be due to the excess production of ROS in these
diabetic patients which consume GSH [57]. GSH is considered as a
cofactor for GSH-Px, thus the reduction in GSH level will cause a
reduction in GSH-Px activity which is observed in Table 2 of the
present study [58].

Results of the present study indicated that the oxidative stress
generated by antioxidants depletion and MDA accumulation may be
involved in the development of cataract associated with diabetes. This
finding is supported by evidence obtained from clinical and animal
studies suggested an association between oxidative stress and
development of diabetic cataract [59,60]. Furthermore, the
involvement of oxidative insults in the pathogenesis of diabetic
cataract was also indicated by the delay in the progression of cataract
development in mice (of loss antioxidants) treated with antioxidants
butylated hydroxytoluene [61], vitamin C [62] and vitamin E [63].

The present results showed that the AR activity, which is considered
as key enzyme of polyol pathway, was highly elevated in diabetic
subjects (Table 3). AR activity is increased with increasing glucose
levels as in hyperglycemia, because AR has a very high Km for glucose.
Thus, the rate of reduction of glucose to sorbitol increases with
increasing glucose levels in tissues that do not require insulin for
glucose uptake like lens due to the AR activation [37,64].

On the other hand, SDH activity was significantly increased in both
type I DM and diabetic cataract patients but slightly increased in type
II DM, compared to its value in normal individuals (Table 3). The
increased activity of erythrocytes SDH in all types of diabetic patients
may be attributed to the aldose reductase catalyzed accumulation
of erythrocytes sorbitol [65].

NADPH is the cofactor for both AR & GSSG-R. Thus, the
competition between AR and GSSG-R for the cofactor NADPH in the
hyperglycemic state may cause GSH depletion. The increased AR
activity in polyol pathway in DM consumes NADPH, results in
impaired activity of GSSG-R leading to depletion of GSH. The
depletion of GSH impairs the activity of antioxidant enzymes, e.g.
GSH-Px as well as that of chain breaking aqueous and lipid phase
antioxidants. These results reflect the contribution of AR in increased
oxidative stress resultant oxidative damage which can then contribute
to pathogenesis of DM [66-68]. These findings are consistent with a
number of studies supported the role of activated AR in increasing of
oxidative stress in diabetic complications. The studies of Chung et al.
[67] and Obrosova [69] reported that the activation of AR enhanced
lipid peroxidation in tissue sites for diabetic complications. In
addition, the administration of aldose reductase inhibitors (ARIs) in
diabetic cataract rats has restored the GSH, lipid peroxidation (LPO)
and the activities of antioxidative enzymes to near normal levels
[54,70,71].

There is accumulating evidence showing the contribution of sorbitol
dehydrogenase (SDH), the second enzyme in the polyol pathway that
converts sorbitol to fructose, in the development of oxidative stress in
diabetic patients. This finding was supported by the study of Tilton et
al. [72], which showed that administration of SDH inhibitors (SDHIs)
into diabetic rats attenuated the diabetes-induced increase in cytosolic
NADH/NAD+ ratio and oxidative stress in diabetic retina. The
mechanism through which SDH contributes in development of
oxidative stress may be related to that the activation of SDH produces
excess of NADH which, in turn, leads to more glucose being channeled
through the polyol pathway and enhanced NADH oxidase which
generates excess of ROS and thus oxidative stress [69,73].
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The oxidative stress and the polyol pathway were significantly
higher in insulin dependent diabetes mellitus (IDDM) patients and
diabetic cataract than controls and non-insulin dependent diabetes
mellitus (NIDDM) patients (Tables 2 and 3 and Figure 1A and 1B)
which may be attributed to the excessive ROS generation in IDDM
patients. The present findings were supported by previous studies
which reported significant decrease in glutathione peroxidase, catalase
and glutathione, and significant increase of MDA concentration [74]
and AR activity [75] in type 1 diabetic patients respectively.

Conclusion
The present observations showed the contribution of oxidative stress

and polyol pathway in the development of diabetic cataract among
diabetic patients, particularly type 1 DM. Furthermore, polyol pathway
contributes to redox imbalance in diabetic tissues in oxidative stress
via depletion of GSH in diabetic patients particularly type 1 DM.
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