The Occurrence of Spontaneous Lymphomas but Not Adenomas or Sarcomas in Rats Treated With Sustained Release Naltrexone

Erin Kelty1,2*, Philip K. Nicholls3, George O’Neill1,3, Zoe Harrison1, Chin-Tark Chan1,3, Peter Symons1, Albert Stuart Reese1,4 and Gary Hulse1

1Unit for Research and Education in Drugs and Alcohol, School of Psychiatry and Clinical Neurosciences (MDP 521), The University of Western Australia, Stirling Highway, Crawley, Western Australia, 6009
2School of Veterinary Biology and Biomedical Sciences, Murdoch University, South Street, Murdoch, Western Australia, 6150
3Go Medical Industries Ltd Pty, 200 Churchill Road, Subiaco, Western Australia, 6008
4Medical School, University of Queensland, St Lucia, Queensland, 4072

Abstract

Naltrexone has been observed to have both a stimulatory and inhibitory effect on the development of tumours in rodents, potentially mediated by changes to the neuroendocrine system as a result of blockade of the opiate receptors, with the period of blockade and the tumour type thought to be influential. This study examined the occurrence of spontaneous tumours in rats treated with a sustained release naltrexone preparation. Materials and methods: 27 male and 27 female rats were randomized into three equal treatment groups (A, B and C). Rats in group A were implanted with a single naltrexone implant tablet, rats in group B were implanted with a single polymer implant tablet (placebo) and rats in group C underwent a sham procedure (control). Three different groups of spontaneous tumours were observed; lymphomas, adenomas and sarcomas. Lymphomas (4 tumours/3 rats) were observed solely in naltrexone treated rats, while adenomas (9 tumours/5 rats) and sarcomas (4 tumours/3 rats) were only observed in the placebo and the control groups. The data suggests that the association of naltrexone on the development of tumours maybe dependent on tumour type. Long term exposure to naltrexone appears to have both a stimulatory and inhibitory effect on tumours in rats, dependent on tumour type.

Keywords: Implant; Opiate antagonist; Tumours

Introduction

Naltrexone is an opiate antagonist, primarily used in the treatment of opiate and alcohol dependence. Due to the opioid systems interactions with other systems, naltrexone has become a drug of interest in a number of different areas of research including substance dependence [1-3], autoimmune diseases such as Crohn’s disease [4] and multiple sclerosis [5,6], compulsive behaviours such as kleptomania [7] and self-injuring behaviours [8,9], polycystic disease and infertility [10-12], glycaemic control in the metabolic syndrome [13-16] and cancer [17,18].

Research from the Pittsburgh group over several decades has demonstrated that tissue growth is under tonic opioid inhibition [24-26]. Hence opioid antagonists such as naltrexone stimulate tissue growth, and opioids themselves inhibit it in virtually all organ systems. This also applies to malignant tumours. In experimental systems in vitro and in preclinical models [27] naltrexone has been shown to stimulate the growth of tumours in the pancreas and squamous tumours of the head and neck, and to stimulate the growth of malignant cells in culture of the fibrosarcoma and neuroblastoma cell lines [28]. Indeed naltrexone’s product information registered with the Australian Therapeutic Goods Administration documents increased rates of tumours of the breast in exposed rats [29]. However, naltrexone has been shown to have both stimulatory and inhibitory effects on the development cancers in rats and mice [18-22] associated with the duration to opiate receptor blockade, the dose and the period of administration [18,21]. In mice, single daily doses of naltrexone at low levels (0.1 and 0.4 mg/kg SC), resulting in partial blockade of the opiate receptors for periods of 4 to 10 hours have shown to significantly decrease the appearance of neuroblastomas (in mice inoculated subcutaneously with S20Y neuroblastoma), whereas equivalent doses given at multiple time points (4 x 0.1mg/kg SC) and larger doses (10 mg/kg SC) resulting in full blockade of the opiate receptors was associated with a decrease in the time taken for neuroblastomas to appear and increased the incidence of tumours [21,23]. At high doses of 30 mg/kg/day and 100 mg/kg/day of oral naltrexone likely to achieve full receptor blockade, there is a reduction in the appearance of spontaneous pituitary adenomas and mammary fibroadenomas.

Oral naltrexone was approved by the US Food and Drug Administration (FDA) in 1984 for the treatment of opiate and alcohol dependence, however the clinical efficacy of oral naltrexone has been limited, primarily due to patient non-compliance with daily oral dosing regimes [24]. An alternative to oral naltrexone is the injection or surgical insertion of a sustained release preparation of naltrexone, which removes the onus on patients to use daily medication [25,26]. One such preparation is the O’Neil Long Acting Naltrexone Implant (OLANI) produced by Go Medical, using a biodegradable polymer to control the release of naltrexone. The OLANI is comprised of naltrexone loaded biodegradable polymer microspheres which, in humans, maintains blood naltrexone levels above 2 ng/ml for up to 6 months [27]. The development of sustained release naltrexone preparations for the treatment of opiate and alcohol dependence has increased interest in the potential stimulatory effects of sustained release naltrexone in relation to tumour development.

The effects of naltrexone on the development of tumours have been hypothesized to be related several mechanisms. The use of...
small doses of naltrexone, providing short term opiate blockade is
thought to reduce the presence of spontaneous tumours through the
up-regulation of metenkephalin, involved in the regulation of tissue
and regeneration. Increase in metenkephalin delays the replication of
cells and while not destroying the cancer cells, it is thought to increase
the likelihood of cancerous cell being destroyed by immunological
mechanisms. Additionally met enkephalin has been shown to inhibit
angiogenesis, boost levels of natural killer cells and potentially have
an immunostimulating/immunoregulating effect [28]. Alternatively,
naltrexone is thought to mediate changes to the neuroendocrine
system (34, 56, 58), increasing the number, density and sensitivity of
opiate receptors in tissue, and increasing NK cell numbers [29-34].

High doses and frequent doses of naltrexone resulting in full
receptor blockade have been shown to have both stimulatory and
inhibitory effects on tumour development in rats and mice possibly
related to the type of tumour. Due to the high frequency of spontaneous
tumours in aging rats we may predict increases and decreases in the
occurrence of different tumour types in rats treated with a sustained
release naltrexone implant as compared with control animals.

Methods

Animals

54 Specific Pathogen Free (SPF) Wistar rats (27 males and 27
females) were purchased from an ISO9001:2000 certified laboratory
animal producer at approximately 12 weeks of age. All rats were
uncastrated, nulliparous and non-pregnant and were housed at
the Animal Facility at Sir Charles Gairdner Hospital. The rats were
randomized by sex into three treatment groups (A, B and C). Following
a three week acclimatisation period to allow them to adjust to the new
environment and to allow the researchers to assess the health of the
animals, the rats in group A received a single OLANI tablet, rats in
group B received a single poly-DL-lactide implant (placebo) and the
rats in group C underwent a sham implant procedure (control). The
rats were implanted under general anaesthetic (isoflurane). An 8 – 10
mm incision was made in to the subcutaneous tissue on the dorsal side,
above the rat's hind leg approximately 15 mm from the spine. Blunt
dissection was used to make a tunnel into the subcutaneous tissue. The
implant was then positioned in the tunnel using the applicator. For
the sham procedure an empty applicator was inserted into the tissue
and removed. The incision was then sealed using 2 to 3 silk sutures.
Following implantation the rats were closely monitored, with regular
examination of the animal's overall health, body condition, local tissue
reaction and implant characteristics.

Planned euthanasia was carried out following implantation
at 3 weeks (6 from each treatment group), 6 months (5 from each
treatment group), 12 months (4 naltrexone, 3 placebo) and following
biodegradation of the implant (determined by palpation of the implant
site) (5 naltrexone, 5 placebo and 7 control). Unplanned euthanasia
and spontaneous death of 4 animals (2 naltrexone, 2 placebo) occurred
during the study, primarily due to illness. Following euthanasia, the
deceased animals were submitted for post mortem examination.

Histology and pathology

In addition to general post mortem examination, major organs
were weighed (liver, kidneys, adrenals, spleen, ovaries, uterus, testes,
heart, lung, brain) and samples of 36 organs were collected for
histology (including weighed organs and the salivary gland, trachea,
thyroid, parathyroid, oesophagus, stomach, duodenum, pancreas,
The implant was ejected at day 78 post implant and re-implanted with a placebo implant at day 170.

Table 1: Of the 54 rats in this study, 9 (16.7%) developed at least one type of tumour. While approximately equal numbers of tumours developed in the three treatment groups, the type of tumours in each group varied. Adenomas and sarcomas occurred only in the placebo and control group, while lymphomas were only present in the naltrexone group.

<table>
<thead>
<tr>
<th>ID</th>
<th>Sex</th>
<th>Treatment</th>
<th>Type</th>
<th>No.</th>
<th>Days from implant</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>F</td>
<td>Placebo</td>
<td>Pituitary adenoma</td>
<td>1</td>
<td>287</td>
<td>Euthanized due to weight loss, lethargy, hunched posture, lack of coordination. Tumour 10 x 8 x 8 mm dark red soft tumour within the cranial cavity compressing overlying brain.</td>
</tr>
<tr>
<td>14</td>
<td>F</td>
<td>Placebo</td>
<td>Fibro-adenoma</td>
<td>1</td>
<td>168</td>
<td>Found at post mortem. Well-demarcated, soft, pale fatty mass, subcutaneously caudal to the left thigh muscle.</td>
</tr>
<tr>
<td>18a</td>
<td>F</td>
<td>Placebo</td>
<td>Fibro-adenoma</td>
<td>1</td>
<td>287</td>
<td>Surgically removed. Positioned under left front leg.</td>
</tr>
<tr>
<td>18b</td>
<td>F</td>
<td>Placebo</td>
<td>Fibro-adenoma</td>
<td>3</td>
<td>462</td>
<td>3 tumours surgically removed.</td>
</tr>
<tr>
<td>23</td>
<td>F</td>
<td>Control</td>
<td>Fibro-adenoma</td>
<td>1</td>
<td>511</td>
<td>Surgically removed from right side of back, above its hind leg.</td>
</tr>
<tr>
<td>42a</td>
<td>M</td>
<td>Control</td>
<td>Islet adenoma</td>
<td>1</td>
<td>515</td>
<td>Found at post mortem. Seen in the pancreas.</td>
</tr>
<tr>
<td>18</td>
<td>F</td>
<td>Placebo</td>
<td>Fibro-sarcoma</td>
<td>1</td>
<td>562</td>
<td>Found at post mortem. A 25mm sarcoma in subcutis (seen histologically)</td>
</tr>
<tr>
<td>22a</td>
<td>F</td>
<td>Placebo</td>
<td>Fibro-sarcoma</td>
<td>2</td>
<td>562</td>
<td>Found at post mortem. Two 5 – 9 mm sarcomas in the subcutis (seen histologically)</td>
</tr>
<tr>
<td>22b</td>
<td>F</td>
<td>Placebo</td>
<td>Metastatic sarcoma</td>
<td>1</td>
<td>562</td>
<td>Found at post mortem. Seen in the lymph node, in association with subcutaneous sarcoma.</td>
</tr>
<tr>
<td>42</td>
<td>M</td>
<td>Control</td>
<td>Fibro-sarcoma</td>
<td>1</td>
<td>515</td>
<td>Found at post mortem. 4mm x 6mm deep within the subcutis (seen histologically)</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>Naltrexone</td>
<td>Colon</td>
<td>1</td>
<td>477</td>
<td>Lymphoma</td>
</tr>
<tr>
<td>27</td>
<td>F</td>
<td>Naltrexone</td>
<td>Colon</td>
<td>1</td>
<td>168</td>
<td>Mural lymphosarcoma</td>
</tr>
<tr>
<td>51a</td>
<td>M</td>
<td>Naltrexone</td>
<td>Liver</td>
<td>1</td>
<td>350</td>
<td>Lymphosarcoma with portal infiltrates of lymphocytes. Centrilobular hydropic degeneration and necrosis.</td>
</tr>
<tr>
<td>51b</td>
<td>M</td>
<td>Naltrexone</td>
<td>Spleen</td>
<td>1</td>
<td>350</td>
<td>Lymphosarcoma with loss of lymphoid nodules and expansions of the Periarteriolar Lymphoid Sheath (PALS).</td>
</tr>
</tbody>
</table>

*The implant was ejected at day 78 post implant and re-implanted with a placebo implant at day 170.

Table 2: The three types of tumours, adenoma, sarcoma and lymphomas observed in rats represent three basic types of tissue in the body; epithelial, mesenchymal and round cell tissue.

Sarcomas

During the study 3 rats developed a total of 4 soft tissue sarcomas (presumptive fibrosarcomas), located in the subcutis of the flank, at the site of the implant (Table 2) (Figure 1). In one animal the sarcoma had metastasized to the lymph node (Figure 2). Tumours were only observed in placebo and control animals, with none observed in the active naltrexone treatment group. The sarcomas were only present in animals at the very end of the study (515 to 562 days post implant).

Hyperplasia

While hyperplasia is generally considered a reactive or non-neoplastic process, the presence of hyperplasia was included in this study because of the potential for hyperplasia to become a malignant process. Hyperplasia was observed in nine animals in the adrenal (in the medulla of 3 rats and in the cortex), pituitary (in the pars distalis of 5 rats) and thyroid (1 rat) (Table 3). Hyperplasia was predominately noted in animals euthanized towards the end of the study, with the first observed at 363 days, with a mean of 479 and a standard deviation of 70 days. Hyperplasia was present in rats from each treatment groups (1 rat in the naltrexone group, 2 in the placebo and 6 in the control).

In the past there has been some question as to the histological distinction between hyperplasia and neoplasia. In this study, neoplasia was distinguished from hyperplasia by the presence of a pseudocapsule...
Figure 1: Light microscopy of fibrosarcoma from rat 42. There are randomly oriented plump fibroblasts amongst a disorganised collagenous stroma.

Figure 2: Lymph node from rat 22, to show an infiltrate of poorly organised mesenchymal cells at the right edge (metastatic sarcoma).

separating the tumour from the adjacent tissue or compression of the adjacent tissue as defined by Percy and Barthol [38].

Discussion

Data from several studies have suggested that exposure of both rats and mice to naltrexone sufficient to achieve total opiate receptor blockade have been shown to have both stimulatory and inhibitory effects on the appearance and development of both spontaneous and chemically induced tumours. Current study data is the first to report outcomes associated with a sustained release naltrexone product and suggests that naltrexone’s effect maybe dependent on tumour type, with increases in lymphomas but a reduction in adenomas and sarcomas.

Recent research into the treatment of lymphomas has produced evidence to suggest that dopamine may play an important role in the expression and regulation of lymphomas. In vitro, low levels of dopamine have shown to rapidly arrest the proliferation of normal and malignant B cells [39] and resulted in the rapid and extensive cell death in a culture of Burkett lymphoma cells [40]. Linkages between the opiate and dopamine system have been demonstrated in rats [41,42] and provide the evidence to support the use of naltrexone in the treatment of amphetamine and alcohol dependence and compulsive behaviours. Research suggests that by blocking the opiate receptors, naltrexone attenuates increases in dopamine. It may be expected that by blocking the opiate receptors for extensive periods, for example with a sustained release naltrexone implant, that there would be less circulating dopamine and thus the prevalence of lymphomas may be increased as observed in our naltrexone rats. In the naltrexone group 3 of the 18 rats (16.6%) were observed to have lymphomas with none in placebo or control group and historical controls measuring rates of spontaneous tumours at 2.3% in females and 1.3% in males (sample of 930 animals) [43].

Similarly it could be expected the by administering small doses of naltrexone, that block a small number of receptors for a short period of time, resulting in up-regulation or increased sensitivity of the receptors that dopamine may in turn be increased in the system. Alternatively the use of small doses of naltrexone may up regulate the production of met enkphalin or increased sensitivity of the opiate growth factor receptor, reducing tumour proliferation and angiogenesis. Such changes may be shown to reduce the incidence or growth of lymphomas as observed in a case study by Berkson et al. [44], in which a patient with stage III follicular lymphoma was successfully treated with low dose naltrexone (3mg, once daily). The authors reported that after 6 months of treatment, the patient’s enlarged cervical and lymph nodes, originally measuring 7.6 cm and 12.7 cm respectively, were no longer palpable and had almost completely resolved. Similarly, CT/PET scans also showed significant improvements in the abnormal foci of activity seen in the neck, axillae, and groin.

Adenomas are especially common in rats, especially with age, with fibroadenomas (particularly involving mammary tissue) occurring in approximately 36% of female and 3% of male Wistar rats, while pituitary adenomas occur in approximately 50% of female and 34% of male Wistar rats [43]. There are a number of possible mechanisms which may explain reduced adenomas in naltrexone exposed rats. Such changes may be the result of naltrexone mediated change in reproductive hormones such as prolactin, oestrogen and progesterone. For example, naltrexone attenuates increases in dopamine [45], which is a known prolactin releasing factor [46]. Increases in prolactin have been linked to the promotion of murine mammary tumorigenesis [47] and increases in the risk of developing breast cancer in post-menopausal women [48]. Naltrexone could have resulted in decreases in beta-endorphins, which may also result in a decrease in prolactin secretion from the pituitary [49]. Alternatively, naltrexone may indirectly

Table 3: Hyperplasia was noted in the adrenal, pituitary and thyroid in animals in each of the groups in this study.

<table>
<thead>
<tr>
<th>Rat No.</th>
<th>Sex</th>
<th>Treatment</th>
<th>Location</th>
<th>Days from implant</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>F</td>
<td>Control</td>
<td>Adrenal</td>
<td>363</td>
<td>Medulla hyperplasia of the adrenal</td>
</tr>
<tr>
<td>9a</td>
<td>F</td>
<td>Naltrexone</td>
<td>Pituitary</td>
<td>477</td>
<td>Nodular hyperplasia in the pars distalis</td>
</tr>
<tr>
<td>9b</td>
<td>F</td>
<td>Naltrexone</td>
<td>Adrenal</td>
<td>477</td>
<td>Medulla hyperplasia of the adrenal</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>Control</td>
<td>Adrenal</td>
<td>363</td>
<td>Focal nodular hyperplasia in the cortex of the adrenal</td>
</tr>
<tr>
<td>18</td>
<td>F</td>
<td>Placebo</td>
<td>Thyroid</td>
<td>563</td>
<td>Unilateral nodular hyperplasia in the thyroid</td>
</tr>
<tr>
<td>23</td>
<td>F</td>
<td>Control</td>
<td>Pituitary</td>
<td>563</td>
<td>Nodular hyperplasia in the pars distalis</td>
</tr>
<tr>
<td>31</td>
<td>M</td>
<td>Control</td>
<td>Pituitary</td>
<td>479</td>
<td>Nodular hyperplasia in the pars distalis</td>
</tr>
<tr>
<td>42</td>
<td>M</td>
<td>Control</td>
<td>Pituitary</td>
<td>517</td>
<td>Nodular hyperplasia in the pars distalis</td>
</tr>
<tr>
<td>44</td>
<td>M</td>
<td>Placebo</td>
<td>Pituitary</td>
<td>517</td>
<td>Nodular hyperplasia in the pars distalis</td>
</tr>
<tr>
<td>49</td>
<td>M</td>
<td>Control</td>
<td>Adrenal</td>
<td>477</td>
<td>Medulla hyperplasia of the adrenal</td>
</tr>
</tbody>
</table>

of the typical Australian human’s lifespan of 79 years. Treatment of human patients for this extent of their life span has not been reported. In terms of exposure, rats euthanized at 3 weeks post treatment may be a better representation of the amount of exposure observed in humans, with 3 weeks equating to approximately 3% of a rat’s life. No tumours were observed in these rats. At this age, (4 to 5 months old) the development of spontaneous tumours is generally uncommon. However it is also worth noting, that in most cases presence or absence of the tumours occurred after naltrexone was no longer being released from the implant.

Moreover the peak cancer incidence in man is in the over-55-year age group, an age bracket which contains only about 2% of most Australian series of opiate-dependent patients [55]. It is further noted that no cases of cancer have been reported in either clinical trials of naltrexone implants [56,57] nor in large comparative case review series [58]. Contrariwise one notes that greatly elevated rates of malignancies affecting the bladder, oesophagus, larynx and oropharynx have been noted in patients who are exposed to long term opiate agonist treatment [59-62]. Furthermore important considerations of clinical co-carcinogenicity by way of interactions with other toxins such as tobacco have been raised in oncological [63] and other [64] contexts.

Clearly further studies are required to examine this issue for both opiate agonist- and opiate antagonist-treated patients in western clinical populations. It is conceivable that just as the elevated rate of malignancy in organ transplant patients remained obscure until specifically studied, and a 100-fold elevation of the rate of bladder cancer in opiate addicts in Iran was not noted until interrogated epidemiologically [65], similar hidden major elevations of the prevalence of malignancies may be operating unobserved. Such a finding if replicated would have major implications for both the type of treatment recommended (viz. agonist vs. antagonist) and the duration for which it is proposed.

Conclusions

Long term continuous exposure to naltrexone appears to have both stimulatory and inhibitory effects on the development of tumours, primarily dependent on the tumour type. All though this study was relatively small and may require repeating in a large sample size, the results were congruent with previously published studies using repeat dose studies using oral and injectable naltrexone. Future study would be directed at examining the mechanism behind naltrexone’s effect on tumours, in the hope it may aid tumour treatment.

Acknowledgements

The authors would like to acknowledge the assistance of the Animal Care Unit at M Block Animal Facility at Sir Charles Gardiner Hospital for their assistance with care of the animals in this study and Dr Yandi Liu for his assistance with the surgical procedure. Michael Slaven and Gerard Spoelstra are thanked for the CD79a and CD3 immunohistochemistry used in tumour immunophenotyping.

References

49. Abou-Issa H, Tejwani GA (1991) Antitumour activity of naltrexone and...
correlations with steroid hormone receptors. Biochem Biophys Res Commun 175: 625-630.

