Tetracycline Resistance of Chilean Campylobacter Jejuni Strain Bank from Humans, Cattle and Chickens

Gonzalez-Hein G¹, Huaracan B¹, Cordero N², and Figueroa G²

¹ Bioingentech, Santiago, Concepción, Chile
²Microbiology and Probiotic Laboratory, INTA, University of Chile, Chile

Campylobacter spp. are a leading cause of foodborne illness around the world, and poultry products (especially chicken meat), are major sources of _Campylobacter_ spp. infection in humans [1]. In recent years, both animal and human _Campylobacter jejuni_ isolates have shown high to extremely high antibiotic resistance to several antibiotics such as tetracycline in several European countries [2]. Tetracycline resistance in _Campylobacter_ spp. is primarily mediated by a ribosomal protection protein Tet (O) that binds to the bacterial ribosome and displaces tetracycline [3]. The tet O gene can be located on both plasmids and chromosomes and is associated with high levels of resistance to tetracycline in _C. jejuni_ [4].

Little was known about tetracycline resistance in Chilean _Campylobacter_ spp., therefore we investigated this resistance in 153 banked _C. jejuni_ strains from humans, cattle, and chickens. Tetracycline resistance and the occurrence of the tet (O) gene were determined. The _C. jejuni_ isolates (n = 153) were obtained from the strain collection at the Microbiology and Probiotics Laboratory of the Food Technology and Nutrition Institute, University of Chile. All 153 _C. jejuni_ isolates were collected in the Metropolitan Region during five years (2006 to 2010). Among the isolates, 55 were from stool specimens of diarrheal patients, the remaining 54 strains were obtained from broiler chicken carcasses and 44 were obtained from cattle rectal swabs. These strains were replicated on selective Skirrow agar [5]. Strain identifications were confirmed by standard microbiological methods and 16S rDNA polymerase chain reaction, PCR [6]. The hippurate hydrolysis test was used for determination of the _C. jejuni_ strain. All hippurate-positive isolates were determined as _C. jejuni_.

C. jejuni strains were tested for antimicrobial resistance against tetracycline by agar disk diffusion method and susceptibility categorization was carried out according to Gaudreau et al. [7]. The minimal inhibitory concentration (MIC) of tetracycline was determined using the broth microdilution susceptibility testing according to the Clinical and Laboratory Standards Institute (CLSI) [8]. MIC determination was applied to isolates with a zone diameter of more than 20 mm or of less than 26 mm (intermediate susceptibility), and less than 20 mm (resistant).

DNA from 153 _C. jejuni_ isolates was extracted by standard molecular biological techniques using the kit: Genomics DNA Purification (Bioingentech, Concepción, Chile). We used as an internal control the amplification of a segment of the 16S rRNA gene by PCR [6]. The presence of the tet (O) gene in all isolates was screened by a _tet_ (O)-specific PCR [9,10]. For this purpose, primers tet(O)-F (5′-GGCGTTTTGGTTATGTGCG-3′) and tet(O)-R (5′-ATGGACAACCCGACAGAACGC-3′) were used to amplify a 559 bp region of the tet(O) gene as described elsewhere [9] using the following conditions: an initial denaturation at 95°C for 5 minutes; 30 cycles of 95°C for 30 seconds, 57°C for 30 seconds, and 72°C for 1 minute; and a final extension of 72°C for 10 minutes [10].

The results showed that _C. jejuni_ have high rates of resistance to tetracycline (45/153, 29%, range: 16-256 µg/mL). Resistance to tetracycline was high but the rates varied according to their origin. The most frequently tetracycline resistant _C. jejuni_ isolates were detected in chickens broiler 28/54 (51.9%), followed by human strains 14/55 (25.5%), and 3/44 (6.8%) cattle strains (P<0.05, Chi-square test). In the screening of tetracycline resistance gene, 37% of _C. jejuni_ isolates (56/153) were positive for tet (O). The 98% (44/45) tetracycline-resistant isolates, based on phenotype, were also tet (O) positive. There was one _C. jejuni_ strain from chicken that did not fit this description (i.e. strain PC18). Eleven _C. jejuni_ strains were tet (O) positive and were found to be not resistant to tetracycline by disk diffusion and microbroth dilution. There was also a significant difference (P<0.05, Chi-square test) in the carrying of tet (O) gene among _C. jejuni_ strains according to their origin, again the higher rates of tet (O) detection found in chicken strains (34/54, 63%) followed by human strains 17/55 (31%). Five of the 44 cattle strains were positive for tet (O) (7.3%).

A large geographical variation in the susceptibility patterns of _C. jejuni_ to tetracycline has been observed in Europe (resistance ranges from 2% to 91 %) (2). In the South of Chile, low percentages (2 %) of tetracycline resistance in _C. jejuni_ isolated from hens and human has been described [11,12]. In contrast, in the present study in Metropolitan region, 45 (29%) out of 153 strains tested were resistant to this antibiotic. Based on the evidence mentioned above, we can conclude that in this geographical region _C. jejuni_ tetracycline resistance is a problem as it is in other countries [2,3].

Caution should be taken in the exclusive use of this PCR method for tet (O) to evaluate tetracycline resistance in _C. jejuni_, because the strain collection included 11 tet (O) PCR positive _C. jejuni_ strains that were phenotypically sensitive to tetracycline. On the other hand, these 11 strains could be tested to confirm the reliability of the disk diffusion, the potential resistance to Tetracycline needs to be confirmed in these strains using the agar dilution method.

Tetracycline resistance and tet (O) are widespread among _C. jejuni_ from chicken broilers. It would be necessary to study the reasons for this finding, and more attention should be addressed to limit the antimicrobial resistance of _C. jejuni_ isolates.

References

