Study of Irradiations to Enhance the Induces the Dissociation of Hydrogen Bonds between Peptide Chains and Transition from Helix Structure to Random Coil Structure Using ATR – FTIR, Raman and 1HNMR Spectroscopies

A Heidari*
Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA

Human tissues are connective tissues which are surrounded the surface of the kidney. They consist of Osteoid (Collagen containing component of bone) fibers (67% Osteoid Type (I) and 33% Osteoid Type (III)), Lysyl Oxidase and LOXL1, LOXL2, LOXL3, LOXL4 fibers in Collagen formation, Hydrolyzed Collagen (a common form in which Collagen is sold as a supplement) fibers, Collagenase (the enzyme involved in Collagen breakdown and re-modelling) fibers and Sponge (cell types) fibers among elastic fibers (Figures 1–6). These tissues are used as graft, since Collagenous tissues begin to be denatured after excision; chemical physics methods like Infrared (IR) light are used to improve chemical physics properties. In the current editorial, the spectroscopic analysis was performed associated with the Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR–FTIR), Raman and 1HNMR spectroscopies to evaluate the effect of Near–Infrared (NIR) or IR–A, Short–Wavelength Infrared (SWIR) or IR–B, Mid–Wavelength Infrared (MWIR) or IR–C, Intermediate Infrared (IIR) or IR–C, Long–Wavelength Infrared (LWIR) or IR–C and Far–Infrared (FIR) lights on the tissues, respectively [1–9].

Samples from human tissues were irradiated using thirty six Near–Infrared (NIR) or IR–A, Short–Wavelength Infrared (SWIR) or IR–B, Mid–Wavelength Infrared (MWIR) or IR–C, Intermediate Infrared (IIR) or IR–C, Long–Wavelength Infrared (LWIR) or IR–C and Far–Infrared (FIR) lamps for 24, 48 and 72 h, respectively. In frequencies sweep test, dynamic force with linear and non–linear amplitudes, which are derived from strain sweep test, and frequencies range from 10 Hz to 110 Hz are induced and the corresponding parameters such as the storage and loss modulus are measured. The Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR–FTIR), Raman and 1HNMR spectroscopies are used in order to observe the changes of molecular structures of these tissues. The effect of Near–Infrared (NIR) or IR–A, Short–Wavelength Infrared (SWIR) or IR–B, Mid–Wavelength Infrared (MWIR) or IR–C, Intermediate Infrared (IIR) or IR–C, Long–Wavelength Infrared (LWIR) or IR–C and Far–Infrared (FIR) lights was seen by noticing the changes of the Amide bands in absorption spectra of tissues, respectively [10–19].

Storage and loss modulus reach their maximum values under 24 hours Near–Infrared (NIR) or IR–A, Short–Wavelength Infrared (SWIR) or IR–B, Mid–Wavelength Infrared (MWIR) or IR–C, Intermediate Infrared (IIR) or IR–C, Long–Wavelength Infrared (LWIR) or IR–C and Far–Infrared (FIR) irradiations to emphasize the cross link formation in the samples and the subsequent reduction after 48 h and 72 h, respectively. Increasing the irradiations’ doses, the processes of degradation predominate to cause the stiffness drop of the samples. In Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR–FTIR), Raman and 1HNMR spectroscopies, changes in Amide (I) and (II) bands indicate changes in secondary structure of Osteoid fibers, Lysyl Oxidase and LOXL1, LOXL2, LOXL3, LOXL4 fibers, Hydrolyzed Collagen fibers, Collagenase fibers and Sponge fibers (Figures 7–9). A notable shift of Amide (I) and (II) were observed to higher and lower frequencies, respectively (Figures 7–9).

Limited exposure to Near–Infrared (NIR) or IR–A, Short–Wavelength Infrared (SWIR) or IR–B, Mid–Wavelength Infrared (MWIR) or IR–C, Intermediate Infrared (IIR) or IR–C, Long–Wavelength Infrared (LWIR) or IR–C and Far–Infrared (FIR) lights generate free radicals in aromatic amino acids, proteins or nucleic acids to form Osteoid molecules, Lysyl Oxidase and LOXL1, LOXL2, LOXL3, LOXL4 molecules, Hydrolyzed Collagen molecules, Collagenase molecules and Sponge molecules cross–linking [1]. It occurs in 24, 48 and 72 h of the irradiations to enhance the induces the dissociation of Hydrogen bonds between peptide chains and transition from helix structure to random coil structure has happened and so Amide (I) band has shifted to the higher frequencies. Furthermore, peptide bonds are broken and Osteoid denaturation, Lysyl Oxidase and LOXL1, LOXL2, LOXL3, LOXL4 denaturation, Hydrolyzed Collagen denaturation, Collagenase denaturation and Sponge denaturation make it shift in Amide (II) bands toward lower frequencies. This denaturation of Osteoid, Lysyl Oxidase and LOXL1, LOXL2, LOXL3, LOXL4, Hydrolyzed Collagen, Collagenase and Sponge cause loosing of chemical physics properties, accordingly.

*COrresponding author: A Heidari, Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA, E-mail: Scholar.Researcher.Scientist@gmail.com

Received March 14, 2016; Accepted March 15, 2015; Published March 19, 2016


Copyright: © 2016 Heidari A. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Figure 2: Different schematics of Collagen random coil structure [1].

Figure 3: Scanning electron microscope (SEM) image of Collagen with triple helix structure with 200000x zoom.

Figure 4: Transmission electron microscopy (TEM) image of Collagen with triple helix structure with 200000x zoom.

Figure 5: Scanning electron microscope (SEM) image of Collagen with random coil structure with 200000x zoom.

Figure 6: Transmission electron microscopy (TEM) image of Collagen with random coil structure with 200000x zoom.

Figure 7: ATR–FTIR spectra of peptide chains transition from (a) helix structure to (b) random coil structure.

Figure 8: Raman spectra of peptide chains transition from (a) helix structure to (b) random coil structure.

Figure 9: 'HNMR spectra of peptide chains transition from (a) helix structure to (b) random coil structure.
References

1. Heidari A (2012) Thesis submitted to the Faculty of the Chemistry, California South University (CSU), Irvine, California, The United States of America (USA) in Fulfillment of the Requirements for the Degree of Doctor of Philosophy (PhD) in Chemistry.


