
Robotic Assist-As-Needed as an Alternative to Therapist-Assisted Gait
Rehabilitation
Shraddha Srivastava1*, Pei Chun Kao2, Darcy S Reisman3, John P Scholz3, Sunil K Agrawal4 and Jill S Higginson5

1Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC 29425, USA
2Department of Physical Therapy, University of Massachusetts Lowell, Lowell, MA 01854, USA
3Department of Physical Therapy, University of Delaware, Newark, DE 19713, USA
4Department of Mechanical Engineering, Columbia University, USA
5Department of Mechanical Engineering, University of Delaware, USA
*Corresponding author: Shraddha Srivastava, Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, 77
President Street, Charleston, SC 29425, USA, Tel: 8437926165; Fax: 8437922829; E-mail: srivasts@musc.edu

Received date: September 25, 2016; Accepted date: October 07, 2016; Published date: October 12, 2016

Copyright: © 2016 Srivastava S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Objective: Body Weight Supported Treadmill Training (BWSTT) with therapists’ assistance is often used for gait
rehabilitation post-stroke. However, this training method is labor-intensive, requiring at least one or as many as three
therapists at once for manual assistance. Previously, we demonstrated that providing movement guidance using a
performance-based robot-aided gait training (RAGT) that applies a compliant, assist-as-needed force-field improves
gait pattern and functional walking ability in people post-stroke. In the current study, we compared the effects of
assist-as-needed RAGT combined with functional electrical stimulation and visual feedback with BWSTT to
determine if RAGT could serve as an alternative for locomotor training.

Methods: Twelve stroke survivors were randomly assigned to one of the two groups, either receiving BWSTT
with manual assistance or RAGT with functional electrical stimulation and visual feedback. All subjects received
fifteen 40-minutes training sessions.

Results: Clinical measures, kinematic data, and EMG data were collected before and immediately after the
training for fifteen sessions. Subjects receiving RAGT demonstrated significant improvements in their self-
selected over-ground walking speed, Functional Gait Assessment, Timed Up and Go scores, swing-phase peak
knee flexion angle, and muscle coordination pattern. Subjects receiving BWSTT demonstrated significant
improvements in the Six-minute walk test. However, there was an overall trend toward improvement in most
measures with both interventions, thus there were no significant between-group differences in the improvements
following training.

Conclusion: The current findings suggest that RAGT worked at least as well as BWSTT and thus may be used
as an alternative rehabilitation method to improve gait pattern post-stroke as it requires less physical effort from the
therapists compared to BWSTT.

Keywords: Robotic exoskeleton; Assist-as-needed; Stroke; Gait
rehabilitation; Body weight supported treadmill training; Force-
field; Locomotion

Introduction
Stroke is a leading cause of serious long-term disability in the

United States. Each year approximately 3795,000 people experience
stroke, out of which about 610,000 are first and 185,000 are recurrent
stroke events [1,2]. Approximately 45% of the individuals discharged
from hospital after stroke return directly home [2]. However, a large
percentage of home-dwelling stroke survivors are unable to achieve
unsupervised community ambulation immediately following discharge
[3]. Additionally, at 6 months post-stroke, about thirty percent of the
survivors still need some assistance to walk [1,4]. Walking ability in
chronic stroke survivors is an important determinant of social
participation and independence in activities of daily living [5,6].

Therefore, gait disability leading to reduced functional independence
and social participation can result in a decline in the quality of life
post-stroke.

Gait rehabilitation following stroke has the potential to improve
walking economy and functional independence during activities of
daily living [7]. Previous studies suggest that gait training provides
better improvements than training focused on other isolated
components such as strength, balance, and coordination [8,9]. One
such gait rehabilitation strategy often used for stroke survivors is the
Body Weight Supported Treadmill Training (BWSTT) [10,11]. During
BWSTT, an overhead suspension system and a harness are used to
support an individual’s body weight partially and symmetrically while
practicing walking. In addition, one or more therapists may provide
manual assistance to the individual to help with the stepping
movements of their paretic lower extremity and weight shifting during
walking [12]. The BWSTT allows the individual to learn weight
bearing and walking at faster speeds at an early stage post-stroke [13],
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thus resulting in greater improvements in functional walking capacity
compared to gait training methods without body weight support
[9,12-15]. However, this gait training strategy is labor intensive,
requiring manual assistance from the therapists [16].

Robot-aided gait training (RAGT) that provides automated training
has been developed as a potential gait rehabilitation method for
individuals with neurological impairments [17-19], as it is less
fatiguing for physical therapists than the therapist-assisted BWSTT.
RAGT was initially developed to provide continuous movement
guidance so subjects would walk in a prescribed gait pattern. However,
previous studies have shown that RAGT results in similar or poorer
improvements in the functional walking ability compared to BWSTT
or conventional gait training post-stroke [17,20]. Metabolic costs and
muscle activations during RAGT are significantly reduced with
continuous guidance in comparison to therapist-assisted
BWSTT [21], as a result of reduced subject effort [22]. In
addition, step-to-step variability which is considered to be important
for motor learning [23,24] is absent when subjects are forced to walk in
a predefined fixed gait pattern during RAGT with continuous
assistance. These limitations could lead to insignificant improvements
in functional walking ability following RAGT.

An assist-as-needed RAGT that provides assistance to the
participants based on their performance was developed recently
[22,25-28]. This method encourages subjects’ active participation and
preserves movement variability while walking. A pilot study has
demonstrated greater improvements in functional walking ability
following an assist-as-needed RAGT paradigm compared to the RAGT
with continuous assistance [22]. In addition, another pilot study on a
single stroke survivor has shown considerable improvements in muscle
coordination, propulsive ground reaction forces, and ankle malleolus
path during walking following the assist-as-needed RAGT [28]. Our
recent publication demonstrated improvements in functional walking
ability following an assist-as-needed RAGT in post-stroke individuals
[27]. However, it is not known if the compliant assist-as-needed RAGT
can serve as an alternative to conventional physical therapy or
therapists’ assisted gait training for post-stroke individuals.

In the current study, we extended our previous findings to compare
the effects of an assist-as-needed RAGT with BWSTT on functional
walking ability post-stroke. Although Duncan et al. suggested that
BWSTT is not superior to a home-exercise program for restoring
functional gait in stroke survivors [29], a more intensive BWSTT may
render greater therapeutic effects [30,31]. RAGT is less fatiguing for
therapists compared to the therapist-assisted BWSTT and has the
potential to provide more intensive training sessions as needed. The
purpose of this study was to understand whether or not RAGT with an
assist-as-needed training paradigm results in less, greater, or equal
improvements in functional walking ability post-stroke in comparison
to the BWSTT.

Methods

Subject information
Twelve stroke survivors (9 males, 3 females) were recruited (Table

1). Inclusion and exclusion criteria were the same as the previous study
from our lab [27] which is as follows: subjects were included if they
had sustained stroke more than three months prior to their
participation and had a single stroke. Subjects were excluded if they
had evidence of chronic white matter disease on magnetic resonance

imaging, congestive heart failure, peripheral artery disease with
intermittent claudication, cancer, pulmonary or renal failure, unstable
angina, uncontrolled hypertension (>190/110 mmHg), dementia
(Mini-Mental State Exam<22) [32], severe aphasia, orthopedic
conditions affecting the legs or the back, or cerebellar signs (e.g.,
ataxia). Subjects were screened by a physical therapist for their
eligibility to participate in the study based on the set criteria.

Subject
ID 

AGE(yrs) Duration Post-
stroke(months)

Side of
affected
Limb

Gender 

RAGT 1 56 95 Left M

RAGT 2 80 53 Left M

RAGT 3 60 3 Right F

RAGT 4 43 3 Right M

RAGT 5 67 20 Left M

RAGT 6 70 149 Left F

BWSTT 1 58 17 Left M

BWSTT 2 48 11 Right F

BWSTT 3 75 14 Right M

BWSTT 4 54 12 Left M

BWSTT 5 59 35 Left M

BWSTT 6 59 3 Right M

Table 1: Demographic detail of the stroke survivors.

All subjects gave written informed consent to participate in the
study, approved by the University’s Review Board. Subjects received a
total of 15 training sessions by having 5 daily sessions per week, every
other week.

Robot-aided gait training
Second version of the Active Leg Exoskeleton (ALEX II) developed

at the University of Delaware was used in the current study to deliver
RAGT [33,34]. During training, the subjects walked on a treadmill,
and an assist-as-needed compliant guidance force was applied on the
stroke subject’s paretic leg. No body weight support was provided to
the subjects in the RAGT group. Details of the RAGT paradigm are
provided in Figure 1. Briefly, the leg exoskeleton applied an assist-as-
needed compliant guidance force on the paretic leg when subject’s
walking patterns deviated from a prescribed target template based on
the ankle path during walking [25,27]. The assist-as-needed force-field
tends to guide the subject’s ankle towards the target template (Figure
1). To increase subjects’ independent control of the leg motion within a
session, we gradually reduced the robotic assistance across the eight
training bouts in a single session. The target template for the training
was based on the walking pattern of ten healthy individuals and the
stroke survivor’s baseline walking pattern at a given speed and leg
length. The malleolus path of healthy individuals was considered to be
100%, and the stroke survivors’ baseline pattern was considered as 0%.
The stroke survivors’ malleolus path was scaled at each data point to a
certain percentage of the healthy data to generate the target template
[25,27]. Based on the subject’s performance on the previous training
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session, the training speed was increased gradually and scaling of the
stroke survivor’s path was increased towards that of the healthy
template with the progression of the training across 15 sessions [27].

Figure 1: Second version of Active Leg Exoskeleton (ALEX II) worn
on the subject’s paretic extremity. The assist-as-needed force-field
provides guidance in the form of a virtual (elastic) tunnel around a
target ankle malleolus path that works similarly to an elastic band,
tending to bring the subject’s ankle towards the target template. The
target template for the training was based on the walking pattern of
ten healthy individuals, and the stroke survivor’s baseline walking
pattern at a given speed and leg length. Healthy individuals’
malleolus path was considered as 100% of the template and stroke
survivors’ baseline pattern was considered as 0%. A normal force
(FN) would be applied to the ankle malleolus towards the virtual
tunnel; if the subject’s instantaneous ankle malleolus position went
beyond the tunnel. The amount of FN required increased with the
increase in subjects’ error to match the target ankle malleolus path.
A minimal tangential force FT helped the subjects to move along the
target malleolus path. The force-field was decreased gradually
within a single session by varying the force stiffness and tunnel
width, providing less constraint on the subject’s swing phase
movement. The target path was made more challenging by scaling it
to different percentages of the healthy pattern with the progression
of the training.

Each training session included eight 5-minute training bouts with
rest breaks after every bout, the rest breaks were at least 2 minutes
long. Subjects received the force-field assistance throughout each five-
minute training bout. They also received visual feedback on their
instantaneous lateral ankle malleolus position and the target path, and
functional electrical stimulation (FES) on their ankle plantar flexors
and dorsi flexors during alternating minutes of each training bout
(Figure 2) [27]. The stimulation intensity for both muscle groups was
set using 300-ms long, 30-Hz train with 150-Volt amplitude. Pulse
duration for dorsiflexors was set with subjects seated. For plantar
flexors, the subjects stood in a position similar to terminal double
support of the paretic leg. Pulse duration was set to achieve lifting of
the paretic heel off the ground or until the subject’s maximal tolerance
was reached, whichever occurred first. The FES stimulation pattern
comprised a high-frequency (200-Hz) 3-pulse burst followed by a
lower frequency (30-Hz) constant frequency train [27,35,36].

Figure 2: Training protocol. Stroke subjects in both groups
participated in 5 daily training sessions per week, for three
alternating weeks, each subject received 15 training sessions in total.
Each training session included eight 5-minute training bouts with
rest breaks after every bout.

Body weight supported treadmill training
Subjects receiving BWSTT walked on the treadmill with partial

body-weight support and manual assistance. Starting with 40% of the
body weight support and preferred walking speed, the amount of body
weight support was gradually decreased to 0% and the training speed
was gradually increased by increments of 0.1 miles per hour. Two
therapists provided manual assistance for assisting stepping motion of
the affected leg and step-to-step weight shifting. The amount of
therapists’ assistance was gradually reduced from bout one to bout
eight in a single session to increase subject’s control over the leg
movement and weight shift during walking.

Data acquisition and analysis
Stroke subjects received a battery of clinical evaluations and

biomechanical gait analysis before the training (baseline) and
immediately after the training (post-training). The clinical evaluation
sessions included lower-extremity Fugl-Meyer Assessment (FMA)
[37], Functional gait assessment (FGA) [38], Six-Minute Walk Test
(6MWT) [39], and Timed Up and Go test (TUG) [40]. Detail of the
clinical assessment scores at baseline for all the stroke survivors are
provided in Table 2. Each subject’s gait was evaluated during over-
ground walking at the self-selected speed. Kinematic data were
collected from the paretic leg by using an eight-camera motion capture
system (Qualisys, Gothenburg, Sweden) and sampled at 120 Hz. Data
were low-pass filtered at 6-Hz, using a bi-directional second order
Butterworth filter. The gait events were identified based on the toe and
heel markers on the foot segment. Visual 3D (C-Motion Inc., Rockville,
MD) was used to estimate over-ground walking speed, and to compute
hip, knee and ankle joint angles. Peak flexion angles during swing
phase of the gait cycle were computed for further analysis.
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Timed Up
and Go (s)

Six-Minute
Walk Distance
(m)

Functional
gait
assessment

Fugl-Meyer
Assessment

RAGT 1 7.6 476 19 24

RAGT 2 15.6 268 14 25

RAGT 3 29.2 72 10 11

RAGT 4 16.2 232 12 21

RAGT 5 29.3 150 8 12

RAGT 6 13.2 332 18 28

BWSTT 1 14.3 169 7 24

BWSTT 2 12.2 234 14 27

BWSTT 3 24.3 107 10 17

BWSTT 4 19.4 250 11 17

BWSTT 5 9.53 295 13 24

BWSTT 6 17.1 265 13 17

Table 2: Detail of clinical measures for stroke survivors.

EMG data from biceps femoris longus, vastus lateralis, vastus
medialis, rectus femoris, gluteus medius, soleus, medial and lateral
heads of gastrocnemius, medial hamstrings, and tibialis anterior
muscles were recorded using a 16-channel EMG
system (MA-416-003 Motion Lab System, Baton Rouge, LA) at a
sampling frequency of 1200 Hz with a 16-bit resolution. All data were
collected from the paretic leg. EMG signals were high-pass filtered
with a cutoff frequency of 20-Hz, rectified and then low-pass filtered
with a cutoff frequency of 6-Hz using a second order Butterworth
filter. EMG from each muscle was normalized to its peak amplitude
across all gait cycles. EMG data of twelve gender-and age-matched (± 5
years) healthy individuals were collected at their self-selected speeds
for comparisons with the stroke subjects.

A dimensionality reduction method, non-negative matrix
factorization, was used to compute the muscle modes to understand
the effects of gait training on muscle coordination [41]. Non-
negative matrix factorization (NMF) factorizes the concatenated
original EMG data (EMGO) into two matrices. One matrix
corresponds to the mode structure that specifies the relative
contribution of each muscle to a muscle mode and another matrix is
the activation timing of each muscle mode across a gait cycle. The two
matrices were computed such that their product is the reconstructed
EMG data (EMGR). The number of adequate modes required for
reconstructing the original EMG (EMGO) after data reduction was
based on the variability accounted for (VAF). VAF was defined as the
ratio between sums of squared errors between the original and
reconstructed EMG data (EMGO -EMGR)2 and the sum of squared
original EMG data (EMGO)2.

All healthy individuals’ EMG data required four modes to explain
90% or more of VAF. NMF was performed using 4 modes for all stroke
survivors for comparisons with healthy individuals. Mode one
primarily consisted activity from soleus (SO), medial head of
gastrocnemius (MG), and lateral head of gastrocnemius (LG) and was
active during late stance. Mode two consisted activity from tibialis
anterior (TA) and rectus femoris (RF) and was active during early and

late swing. Mode three consisted activity from gluteus medius (GM),
vastus lateralis (VL), vastus medialis (VM), and rectus femoris RF and
was active during early stance. Mode four consisted activity from
biceps femoris longus (BF) and medial hamstrings (MH) and was
active during late swing and early stance [41]. Pearson’s correlation was
performed to determine the level of similarity in the mode structure
and timing between stroke survivors and matched controls at baseline
and post-training [28,41,42].

Statistical analysis
Due to the small sample size, we used Wilcoxon signed rank test to

test for within-group differences in the gait parameters, clinical
outcome measures, mode structure, and mode timing before and after
the training. Between-group differences were tested using the Mann
Whitney U test with Monte Carlo estimation of p-values. The
significance level for all statistical analyses was set at p<0.05. All
statistical analyses were performed in SPSS version 21 (IBM Co.,
Somers, NY).

Results
In the current study, there were no significant differences between

the two groups at baseline for any outcome measures. No significant
differences were seen between the groups post-training based on
Monte Carlo simulation for 10,000 random samples. For within-
group differences, kinematic measures were not improved following
BWSTT whereas swing-phase peak knee flexion angles changed
significantly following RAGT (p=0.02; baseline=43.9º ± 18.7º; post-
training=48.1º ± 17.4º) (Figure 3). The current study showed that
stroke survivors receiving assist-as-needed RAGT significantly
improved their self-selected over-ground walking speed (p=0.02;
baseline=0.58 ± 0.3 m/s; post-training=0.70 ± 0.3 m/s). The
improvements following BWSTT were not statistically significant
(p=0.07; baseline=0.57 ± 0.2m/s; post-training=0.75 ± 0.3 m/s).

Figure 3: Over-ground kinematic data before and immediately after
RAGT and BWSTT. Peak hip and knee flexion angles and peak
ankle dorsiflexion angle (°) during the swing phase of gait cycle
averaged across subjects for the paretic leg following RAGT (right)
and BWSTT (left), at baseline and after training (post-training).
Error bars represent the standard deviation across subjects. *p<0.05.
Red dashed line on the right panel indicates the normal peak knee
flexion angle of ~61.9°.

Citation: Srivastava S, Kao PC, Reisman DS, Scholz JP, Agrawal SK, et al. (2016) Robotic Assist-As-Needed as an Alternative to Therapist-
Assisted Gait Rehabilitation. Int J Phys Med Rehabil 4: 370. doi:10.4172/2329-9096.1000370

Page 4 of 8

Int J Phys Med Rehabil, an open access journal Stroke Rehabilitation ISSN:2329-9096



Clinical evaluations that assess dynamic postural stability [43, 44]
such as TUG (p=0.02; baseline=18.5 ± 8.8 s; post-training=15.9 ± 7.5 s)
and FGA (p=0.02; baseline=12.0 ± 3.1 s; post-training=13.8 ± 3.1 s)
improved significantly following RAGT (Figure. 4). However, only one
subject following RAGT and none following BWSTT group achieved a
change greater than the reported Minimal detectable change (MDC) in
TUG (i.e., 7.84 seconds) [45]. Furthermore, none of the subjects in
either group demonstrated changes greater than MDC in FGA (i.e.,
4.2) [46]. In the current study, the distance walked during the 6MWT
improved significantly (p=0.04; baseline=211.7 ± 66.1 m; post-
training=257.9 ± 71.6 m) following BWSTT but not following RAGT.
However, one out of the six subjects demonstrated changes in the
6MWT greater than the MDC (i.e., 54.1 m) [47] following BWSTT. No
significant changes were observed in FMA scores for either of the two
groups. Two subjects following RAGT and three following BWSTT
showed changes in FMA greater than the MDC (i.e., 3.57) [45]. We
found that post-stroke individuals receiving RAGT demonstrated
improvements in the structure of one muscle mode by showing greater
similarity to the healthy controls (p=0.04; baseline=0.69 ± 0.1; post-
training=0.74 ± 0.1) (Figure 5). This mode primarily consists of
activation of tibialis anterior and rectus femoris. No changes were
found in the activation timing of any mode following RAGT, or mode
structure and mode activation timing following BWSTT.

Figure 4: Changes in the clinical outcome measures and over-
ground walking speed after the two training paradigms. Clinical
measures and self-selected gait speed averaged across subjects for
RAGT (right) and BWSTT (left) groups, at baseline and after
training (post-training). Error bars represent the standard deviation
across subjects. *p<0.05.

Discussion
The current study is the first to compare the effects of therapist-

assisted BWSTT with RAGT using an assist-as-needed paradigm
combined with visual feedback of real-time performance and FES on
the ankle plantar flexors and dorsi flexors. Previous gait training
studies that assessed the effectiveness of post-stroke gait rehabilitation
were primarily based on clinical measures [17,18,29]. The current
study also evaluated stroke survivors’ over-ground walking pattern
along with the clinical measures, providing additional information
regarding the effects of RAGT on the over-ground gait pattern
compared to BWSTT.

Figure 5: Mode structure of healthy controls and stroke survivors
before and after RAGT. Stroke survivors’ mode two was similar in
structure to healthy controls following RAGT. *p<0.05.

In the current study over-ground gait assessments demonstrated an
increase in subjects’ peak knee flexion angle towards normal i.e.
towards ~61.9º [48]. Compared to the neurologically intact individuals,
stroke survivors usually have reduced swing peak knee
flexion [48,49]. Therefore, improvement in the peak knee flexion angle
in the current study suggests that an assist-as-needed RAGT may
improve the gait pattern post-stroke. However, further research is
needed to determine whether the increase in the peak knee flexion
angle is an effect of the FES or assist-as-needed force-field alone or a
combined effect from both modalities. Additionally, over-
ground walking speed improved significantly following RAGT which is
similar to findings from previous literature on RAGT with continuous
assistance [17]. All subjects in the current experiment demonstrated
improvements in gait speeds following RAGT and two out of six
subjects who trained with RAGT improved greater than the minimum
clinically important difference (MCID) (i.e., 0.16 m/s) [50]. Although
there was an increase in walking speed following BWSTT, however the
changes were not significant. Four subjects improved greater than the
MCID, but one subject did not change at all, and another subject
demonstrated slight decrease in the self-selected over-ground walking
speed. Current results do not agree with previous studies that have
demonstrated improvements in over-ground self-selected walking
speed in people post-stroke following BWSTT [12,16]. The discrepancy
in the results from the current study could be due to the larger
standard deviation in the change of speed following BWSTT.

In the current study, subjects demonstrated a significant
improvement in TUG and FGA following RAGT. Although only one
subject demonstrated an improvement greater than the reported MDC
in the measures for dynamic postural stability, all subjects
demonstrated a trend towards improvement following RAGT. Unlike
the commercially available Lokomat that restricts trunk
movements [17], ALEX II is designed with four degrees of freedom
(DOF) at trunk [33]. Therefore, additional DOFs in ALEX II may
possibly provide beneficial effects on trunk control and postural
stability during walking resulting in improved performance on clinical
assessment measures of postural stability during walking. In the
current study, the BWSTT group improved their endurance whereas
the RAGT group did not. However, it has been shown previously that
individuals receiving BWSTT or RAGT with continuous assistance
demonstrated improvements in 6MWT [17,18]. As evidenced by the
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improvement in kinematic measures, it can be inferred that stroke
survivors improved their over-ground gait pattern following an assist-
as-needed RAGT. However, walking in an ideal gait pattern can be
challenging post-stroke and may consequently have resulted in smaller
improvements in endurance after RAGT compared to the subjects
receiving BWSTT. Additionally, no improvements were observed in the
FMA scores following RAGT or BWSTT. Duncan et al. [29] have
demonstrated improvements in FMA following BWSTT. However,
subjects in the aforementioned study received 36 sessions of gait
training. Some previous studies also showed improvements in FMA
and 6MWT following assist-as-needed RAGT paradigm. However,
those pilot studies included data from a single stroke
subject [22,28]. Therefore, further investigation is needed to
understand the effects of assist-as-needed RAGT on sensorimotor
function and endurance post-stroke.

Following RAGT, stroke survivors also demonstrated improvements
in the structure of one out of the four muscle modes required during
walking. The mode structure that changed towards healthy pattern
primarily includes contribution from tibialis anterior and rectus
femoris muscles and is important for controlling leg motion during
early and late swing [51]. This mode contributes towards accelerating
the leg into swing and also decelerates the leg in early and late swing in
preparation for foot contact. The improvement of this mode may
suggest better control of the paretic leg during swing. We did not see
any changes in the mode structure or activation time following
BWSTT. However, Routson et al. [52] showed improvements in mode
structure as well as activation timing following 36 sessions of BWSTT.
It is possible that stroke survivors may require more training sessions
to normalize their muscle mode structure and activation timing.
Therefore, a more intensive gait training program may be required to
modify muscle coordination following stroke.

One limitation of the current experiment is that it is difficult to
determine which component of our robotic gait training paradigm had
stronger therapeutic effects than others. A previous study from our
laboratory reported that healthy individuals receiving robotic gait
training with a combination of visual feedback and assist-as-
needed force field demonstrated larger modification in their gait
pattern compared to those individuals receiving gait training with
visual feedback or force field alone [53]. Therefore, purpose of the
current study was to evaluate the potential of a comprehensive, robotic
training paradigm that includes visual feedback, force guidance, and
functional electrical stimulation as a training alternative for gait
rehabilitation. In addition, another limitation of the current study is
the small sample size that includes subjects with mild to moderate
impairments. Thus, investigating the effects of assist-as-needed RAGT
in comparison to BWSTT on stroke survivors with a larger sample size
and more diverse motor impairment level may help us identify the
population cohort that may benefit the most from RAGT in
combination with FES and visual feedback or stroke survivors who
may better respond to BWSTT.

Conclusion
There were no significant differences in the changes of clinical and

biomechanical measures between the two training groups. However,
subjects in both groups demonstrated a trend towards improvement,
suggesting that assist-as-needed RAGT has similar effects as BWSTT
on improvements of gait pattern in stroke survivors. In addition,
RAGT is less fatiguing for therapists compared to the therapist-assisted
BWSTT and thus, has the potential to provide more intensive training

sessions as needed. Our findings suggest that the combined approach
of assist-as-needed RAGT with FES and visual feedback may be used
as an alternative for locomotor training to restore functional walking
ability post-stroke. Future studies are needed to identify the
appropriate dosage for rendering significant long-term effects of RAGT
with assist-as-needed training paradigm on improvement of functional
walking ability post-stroke.
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