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Abstract
HER2 is a trans-membrane receptor tyrosine kinase that activates multiple growth-promoting signaling pathways 

including PI3K-AKT and Ras-MAPK. Dysregulation of HER2 is a frequent occurrence in breast cancer that is 
associated with poor patient outcomes. A primary function of HER2 is suppressing apoptosis to enhance cell survival 
giving rise to uncontrolled proliferation and tumor growth. There has been much investigation into the mechanisms by 
which apoptosis is suppressed by HER2 in hopes of finding clinical targets for HER2-positive breast cancers as these 
cancers often become resistant to therapies that directly target HER2. Several apoptotic mechanisms have been 
shown to be deregulated in HER2-overexpressing cells with examples in both the intrinsic and extrinsic apoptotic 
pathways. HER2-mediated activation of PI3K-AKT signaling is required for many of the mechanisms HER2 uses 
to suppress apoptosis. HER2 overexpression is correlated with increases in anti-apoptotic Bcl-2 proteins including 
Bcl-2, Bcl-xL, and Mcl-1. HER2 also suppresses p53-mediated apoptosis by upregulation of MDM2 by activation of 
AKT. In addition, survivin expression is often increased with HER2 overexpression leading to inhibition of caspase 
activation. There is also recent evidence to suggest HER2 can directly influence apoptosis by translocation to the 
mitochondria to inhibit cytochrome c release. HER2 can also suppress cellular reaction to death ligands, especially 
TRAIL-induced apoptosis. Elucidation of the mechanisms of apoptotic suppression by HER2 suggest that clinical 
treatment will likely need to target multiple components of these pathways as there is redundancy in HER2-mediated 
cell survival. Several therapies have attempted to target Bcl-2 proteins that have promising pre-clinical results. 
Next-generation HER2 targeting therapies include irreversible pan-ERBB inhibitors and antibody-drug conjugates, 
such as T-DM1 that has very promising clinical results thus far. Further investigation should include elucidating 
mechanisms of resistance to HER2-targeted therapies and targeting of multiple components of HER2-mediated cell 
survival.
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Introduction
HER2 (or ERBB2/Neu) is a transmembrane tyrosine kinase 

belonging to the ERBB family of receptors (ERBB1-4). ERBB receptors 
hetero and homo-dimerize resulting in activation of tyrosine kinase 
activity. ERBB tyrosine receptor kinases activate several pathways, 
including PI3K-AKT and RAS-MAPK pathways, which regulate 
many cell functions including proliferation, migration, survival, and 
cell growth among others. Hyperactivation or overexpression of these 
receptors can lead to uncontrolled cell growth and proliferation leading 
to cancer development. HER2, specifically, is overexpressed in 20-
30% of breast cancers and this overexpression is associated with poor 
patient outcomes [1-3]. One of the hallmarks of cancer is the resistance 
to apoptosis [4,5] and HER2 overexpression leads to suppression of 
apoptosis. This review will focus on the known mechanisms by which 
HER2 suppresses apoptosis in breast cancer cells.

Mechanisms of Apoptosis
Apoptosis, or programmed cell death, occurs in human cells via 

two primary pathways termed the intrinsic and extrinsic pathways. 
The intrinsic pathway is mediated by the mitochondria whereby the 
outer mitochondrial membrane loses its integrity in a process termed 
outer Mitochondrial Membrane Permeabilization (MOMP), which 
allows the release of pro-apoptotic proteins. Cytochrome c, one of 
the released pro-apoptotic proteins, then interacts with apoptotic 
protease-activating factor 1 (APAF1). APAF1 oligomerizes forming 
the apoptosome, which recruits and activates caspase 9, an initiator 
caspase. MOMP also causes release of Second Mitochondria-Derived 
Activator of Caspase (SMAC or DIABLO) and OMI (HTRA2). These 
proteins indirectly enhance caspase activity by preventing caspase 
inhibition by inhibitor of apoptosis proteins (IAPs). IAPs, including 

XIAP and survivin, play a significant role in suppression of apoptosis 
in cancer cells.

The balance of pro- and anti-apoptotic proteins in the Bcl-2 protein 
family primarily regulates the intrinsic pathway and MOMP. The Bcl-
2 proteins Bax and Bak mediate initiation of MOMP. MOMP begins 
with Bax localization to the mitochondrial outer membrane (MOM) 
where it interacts with Bak leading to pore formation and release of 
cytochrome c. Anti-apoptotic Bcl-2 proteins (Bcl-2, Bcl-xL, Mcl-1, 
Bcl-w, and A1) can physically interact with Bax/Bak suppressing their 
pore-forming function. Another category of Bcl-2 proteins are the pro-
apoptotic BH3-only proteins that include PUMA, NOXA, Bik, Bim, 
and Bad, among others. These BH3-only proteins promote apoptosis 
by two mechanisms: 1) physical interaction with anti-apoptotic Bcl-2 
proteins preventing their inhibition of Bax/Bak and 2) direct activation 
of Bax/Bak. The balance between pro-apoptotic and anti-apoptotic 
Bcl-2 proteins plays a large role in whether MOMP, and ultimately 
apoptosis, will occur. P53 also participates in promoting apoptosis by 
sensing DNA damage and can upregulate pro-apoptotic Bcl-2 proteins 
(e.g. PUMA) as well as suppress IAPs (e.g. survivin).

The extrinsic apoptotic pathway is directly activated by external 
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ligands, such as FAS ligand binding to its receptor FAS. FAS is termed 
a death receptor and recruits adapter molecules, FAS-Associated 
Death Domain Protein (FADD) in the case of FAS. These adapter 
molecules dimerize and activate caspase 8, another initiator caspase. 
There is some crossover between the extrinsic and intrinsic apoptotic 
pathways mediated by BH3-Interacting Domain Death Agonist 
(BID). After activation by death receptors, caspase 8 can cleave BID 
to form truncated BID (tBID), which localizes to the mitochondria 
and activates Bax/Bak-dependent MOMP leading to apoptosis. Both 
the extrinsic and intrinsic apoptotic pathways converge at activation 
of initiator caspases (e.g. caspase 8/9), which activate effector caspases 
(e.g. caspase 3), which have many targets in the cell that carry out the 
apoptosis program. These are brief descriptions of the mechanisms 
involved in the apoptotic program. To gain further insight to these 
mechanisms, the reader is referred to other reviews that describe these 
in more detail [6-8].

HER2 Regulation of Apoptosis
Overexpression of HER2 has been shown to suppress apoptosis 

through mechanisms that disrupt both the intrinsic and extrinsic 
apoptotic pathways. Maintenance of HER2 expression is also required 
for HER2-mediated suppression of apoptosis. Inhibition of Hsp90 in 
HER2-overexpressing cells resulted in degradation of HER2 protein 
and subsequent inactivation of downstream signaling including the 
PI3K-AKT pathway [9,10]. In addition to Hsp90, HER2 expression 
is also protected by Rab7, a GTPase that regulates endocytosis, as 
loss of Rab7 resulted in proteasome-mediated degradation of HER2 

[11]. Thus, the proteins that maintain HER2 overexpression also help 
maintain suppression of apoptosis by HER2 signaling.

HER2 regulation of the intrinsic pathway

HER2 is a well-known activator of PI3K-AKT signaling and 
this pathway plays a large role in suppression of apoptosis by HER2 
(Figure 1). AKT has been shown to directly phosphorylate the pro-
apoptotic Bcl-2 protein Bad , which allows binding of 14-3-3 proteins 
that sequester Bad away from anti-apoptotic Bcl-2 proteins ultimately 
suppressing Bad-induced cell death [12]. AKT has also been shown to 
suppress Bim, another BH3-only pro-apoptotic protein [13]. AKT can 
phosphorylate several members of the forkhead family of transcription 
factors (FOXO), including FOXO3a, which leads to binding of 14-3-
3 proteins to FOXO3a and sequestration from the nucleus [14,15]. 
Inhibition of FOXO3a transcriptional activity by nuclear export 
prevents FOXO3a-mediated expression of pro-apoptotic genes, 
including BIM [13-15]. Inhibition of FOXO family members by AKT 
also suppresses FOXO1-mediated suppression of the IAP survivin and 
prevents FOXO3a-mediated expression of the pro-apoptotic BH3-
only protein Bnip3 [16,17]. In addition to regulation of these upstream 
participants in the intrinsic apoptotic pathway, AKT has been shown to 
directly phosphorylate caspase-9 reducing its protease activity causing 
suppression of apoptosis [18].

HER2 also negatively regulates p53 function. HER2 suppresses 
p53 by two indirect mechanisms that are both mediated by AKT. First, 
it was observed that HER2 or AKT activation decreased expression 
and nuclear localization of p53 [19]. AKT was then found to directly 
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Figure 1: HER2 suppresses apoptosis via multiple mechanisms in both extrinsic and intrinsic apoptotic pathways. HER2 expression is maintained and 
stabilized by Rab7 and Hsp90. HER2 activates PI3K-AKT signaling, which directly suppresses FOXO1/3a through phosphorylation. Suppression of FOXO proteins 
relieves their repression of survivin. AKT also inhibits p53, which prevents p53-mediated expression of the pro-apoptotic genes PUMA, NOXA, APAF1, and BAX. 
HER2 activates NF-κB in an AKT-dependent manner, which increases expression of survivin. In addition, HER2 increases XIAP levels, which inhibits TRAIL-induced 
apoptosis. Lastly, HER2 localization to the mitochondria suppresses apoptosis by inhibition of cytochrome c oxidase. Thus, HER2 initiates broad changes to cell 
signaling that results in cell survival and suppression of apoptosis in response to toxic therapies.
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phosphorylate MDM2 protein leading it into the nucleus where 
MDM2 can ubiquitinate p53 leading to its degradation [19]. The 
second mechanism involves AKT-mediated suppression of Alternate 
Reading Frame Protein (ARF). ARF interacts with and suppresses 
MDM2 from interacting with p53. HER2-overexpressing cells were 
observed to have reduced ARF expression in an AKT-dependent 
manner leading to increased MDM2 and reduced p53 [20]. Inhibition 
of p53 expression greatly inhibits apoptosis as p53 has been shown 
to upregulate several pro-apoptotic genes involved in the intrinsic 
apoptotic pathway including PUMA [21], NOXA [22], APAF-1 [23], 
and Bax [24]. In addition, p53 has been shown to suppress survivin 
[25] and Bcl-2 [24] expression. Thus, HER2 signaling enhances p53 
degradation, preventing p53-mediated apoptosis.

Survivin appears to be important in HER2-mediated apoptosis 
suppression as it has a strong association with HER2 expression in 
patient tumors [26,27]. Knockdown of HER2 reduces survivin [28] 
and forced expression of HER2 increases survivin [29,30]. It was also 
observed that inhibition of the proteasome prevents loss of survivin 
protein with HER2 knockdown suggesting HER2 protects survivin 
from degradation [28]. As mentioned above, AKT-mediated down 
regulation of FOXO family members leads to increased survivin 
expression [16] and survivin expression can also be increased by 
AKT-mediated activation of NF-κB [31,32]. Together, these results 
clearly show HER2 expression promotes survivin expression leads to 
decreased apoptosis.

Experimental manipulation of HER2 gives several clues to 
mechanisms of cell survival. Overexpression of HER2 most commonly 
leads to upregulation of Bcl-2, Bcl-xL, Mcl-1, and survivin [30,33,34]. 
In accordance, there is a positive correlation between expression 
of HER2 with Mcl-1, Bcl-2, Bcl-xL, and survivin in patient tumors 
[26,27,34-37]. HER2 overexpression suppresses levels of miR15a and 
miR16, which target Bcl-2, leading to increased Bcl-2 expression [33]. 
Pharmacologic inhibition of Bcl-2 sensitized HER2-overexpressing 
cells to lapatinib and knockdown of Bcl-2 increased responsiveness 
of HER2-overexpressing cells to tamoxifen [38,39]. These results 
suggest Bcl-2 is major target of HER2 in promoting cell survival. In 
addition to Bcl-2, knockdown of Mcl-1 and Bcl-xL sensitized HER2-
overexpressing cells to HER2-targeted therapy with observed increases 
in Bim expression [38,40,41]. Targeting HER2 with trastuzumab 
decreases expression of Bcl-2, Mcl-1, survivin, and phospho-Bad along 
with increased expression of the pro-apoptotic Bnip3 ultimately leading 
to cell death [16,17,42-44]. Treatment of HER2-overexpressing cells 
with lapatinib, the dual EGFR/HER2 inhibitor, increased expression 
of Bim, decreased expression of survivin and inhibited PI3K-mediated 
NF-κB activation [28,41, 45-47]. Overexpression and inhibition of 
HER2 indicate a dominant role of Bcl-2 proteins in HER2-mediated 
protection from apoptosis.

Lastly, there is some recent evidence that HER2 can directly 
affect apoptosis. HER2 was recently detected in the mitochondria of 
HER2-overexpressing cells in a manner dependent on mitochondrial 
Hsp70 (mtHsp70) and active HER2 kinase activity [48]. One of the 
major functions of HER2 in the mitochondria was to reprogram 
cell metabolism toward glycolysis and away from oxidative 
phosphorylation [48]. However, investigators also observed that 
mitochondrial HER2 contributed to trastuzumab resistance by 
decreasing the activity of cytochrome c oxidase in a HER2-dependent 
manner [48]. Furthermore, paclitaxel-induced apoptosis was reduced 
in cells expressing mitochondrial HER2 [48]. In addition, a HER2 
fragment (~110 kDa) was identified as HER2 amino-terminal fragment 

(H2NTF) that is expressed in approximately 60% of HER2-positive 
breast cancer samples [49]. This fragment did not contain the kinase 
domain but did interact with the full-length HER2 receptor and 
prevented a trastuzumab-mediated decrease in cell viability [49]. Our 
lab observed that EGFR, a fellow ERBB RTK, could directly interact 
with the BH3-only protein PUMA, which prevents its localization to the 
mitochondria and promotion of apoptosis [50]. These results, suggest 
that ERBB family members take on a more direct role in suppressing 
apoptosis than previously thought. 

HER2 regulation of the extrinsic pathway

While the regulation of the extrinsic apoptotic pathway by HER2 
has been studied less, there is ample evidence HER2 also deregulates 
this pathway. Apoptosis in response to TNF-α was suppressed in 
HER2-overexpressing cells [51]. AKT-mediated activation of NF-
κB was required to suppress apoptosis with TNF-α exposure in 
these HER2-overexpressing cells [51]. Another study also observed 
that inhibition of PI3K-AKT signaling in HER2 overexpressing cells 
suppressed TRAIL-induced apoptosis [52]. TRAIL-induced apoptosis 
was enhanced by trastuzumab in these cells [52]. AKT signaling appears 
to be a general suppressor of TRAIL-induced apoptosis as active AKT 
has been seen to suppress apoptosis by TRAIL in multiple cancer types 
[53,54]. XIAP likely plays a significant role as knockdown of XIAP 
in HER2-overexpressing cells enhanced apoptosis by TRAIL and 
enhanced apoptosis with trastuzumab and lapatinib [55]. In addition 
to its effects on these pathways, HER2 mediates suppression of p53 as 
described above [19,20]. The death receptor Fas is a known target of 
p53 [56] and HER2-mediated suppression of p53 likely suppresses the 
cellular response to Fas-ligand.

HER2 regulation of other factors that suppress apoptosis

HER2 also regulates other proteins that appear to suppress 
apoptosis but are not directly involved in the intrinsic or extrinsic 
apoptotic cascade. The scaffolding protein p130Cas can bind to and 
enhance signaling of many HER2 downstream signaling molecules 
including FAK, PI3K, Crk, and Src among others [57]. Knockdown of 
of p130Cas in HER2-overexpressing cells induced apoptosis [58]. The 
mechanism by which apoptosis was induced was not elucidated but 
many of the pro-survival mechanisms of p130Cas involve signaling of 
its binding partners including PI3K, FAK, Src, and integrins among 
others [57]. Another factor involved is protein tyrosine kinase 6 
(PTK6 or Brk), an intracellular tyrosine kinase that has no expression 
in normal breast tissue but robust expression in breast tumors [59]. 
Overexpression of HER2 induced PTK6 expression and knockdown of 
PTK6 in these cells induced apoptosis [60]. Previous reports suggest 
PTK6 regulates apoptosis by activating signaling pathways that enhance 
survival including AKT and STAT signaling [59]. Lastly, COX-2 may 
also contribute to HER2-mediated inhibition of apoptosis as HER2 
activation upregulated COX-2 and inhibition of COX-2 induced 
apoptosis in HER2-overexpressing cells [61-63]. COX-2 has previously 
been shown to suppress apoptosis by PGE2-mediated activation of 
AKT and Ras signaling [64].

Potential Drug Targets for HER2-positive Breast 
Cancer

Apoptosis of HER2-overexpressing cells was shown to be 
enhanced by targeting HER2, PI3K-AKT, or Bcl-2 proteins in many 
pre-clinical studies. As such, most clinical attempts to suppress HER2-
overexpressed cancers have targeted HER2 or molecules downstream 
of HER2. The compounds Abt-737, Abt-263 (navitoclax), Abt-199, 
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AT-101 and GX150-070 (obatoclax) are BH3 mimetics that target 
Bcl-2, Mcl-1, or Bcl-xL to suppress their anti-apoptotic function 
[65,66]. In clinical trials, these compounds have primarily been used 
in populations with liquid tumors or lung cancers leaving little clinical 
evidence of their utility in HER2-positive breast cancer. A preclinical 
study using a breast tumor xenograft model found that Abt-737 could 
lead to apoptosis in xenografts with the highest HER2 expression but 
overall tumor regression was very little [67]. However, the xenograft 
with the highest HER2 expression was much lower than tumors with 
HER2 amplification [67]. These BH3 mimetics have also been shown 
to be ineffective in cells without overexpression of anti-apoptotic Bcl-2 
proteins [68]. Considering Bcl-2, Mcl-1, and Bcl-xL are upregulated in 
HER2-positive cancers, these proteins would seem to be attractive drug 
targets for HER2-positive cancers. 

HER2 has been directly targeted by antibody approaches (e.g. 
trastuzumab) and kinase inhibitor approaches (e.g. lapatinib) that are 
often effective in patients combined with chemotherapy but patients 
also become resistant after long-term treatment [69]. Most recently, 
the antibody-drug conjugate T-DM1, which conjugates trastuzumab 
(T) with the cytotoxic agent mertansine (DM1), was FDA-approved 
for treating HER2-positive metastatic breast cancers with encouraging 
results in clinical trials in this population [70-72]. Another approach 
underway is using irreversible pan-ERBB inhibition (e.g. dacomitinib) 
with preclinical evidence of inhibition of HER2-overexpressing cells 
resistant to trastuzumab and lapatinib [73].

Considering patients will eventually become resistant to 
trastuzumab, an effective method of inhibiting HER2-positive tumor 
growth appears to be combination of HER2 inhibition along with 
targeting another downstream molecule. For instance, targeting HSP90 
along with trastuzumab is more effective than either treatment alone in 
pre-clinical studies and this combination has shown antitumor activity 
in clinical trials [74-80]. The first of these clinical trials occurred in 
2007 as a phase I dose-escalation study of trastuzumab (4 mg/kg) 
along with tanespimycin (or 17-AAG) doses of 225, 300, 375, and 
450 mg/m2 on 25 patients with advanced solid tumors with 14 of the 
patients having previous trastuzumab treatment [77]. The dose limiting 
toxicity of tanespimycin was 375 mg/m2 with mild to moderate toxicity 
symptoms of fatigue, nausea, diarrhea, emesis, headache, and rash [77]. 
Antitumor activity was assessed by RECIST criteria, which resulted in 
1 partial response while another 4 patients showed tumor regression, 
with regression as high as 70%, and all had HER2-positive metastatic 
breast cancer and previous trastuzumab treatment [77]. An additional 
3 patients had stable disease and two were confirmed to be HER2-
positive with 1 having previous trastuzumab treatment [77]. A more 
recent phase I trial was conducted using trastuzumab (4 mg/kg) along 
with alvespimycin (17-DMAG) doses of 60, 80, and 100 mg/m2 on 28 
patients with advanced solid tumors with 24 of these patients having 
previous trastuzumab treatment [74]. Dose limiting toxicity was 
80 mg/m2 with common mild to moderate toxicities being diarrhea, 
fatigue, myalgia, arthralgia, nausea, blurry vision, headache, back pain, 
and dry eyes [74]. One patient showed a partial response and 7 patients 
displayed stable disease and all had HER2-positive metastatic breast 
cancer and previous trastuzumab treatment. This resulted in a clinical 
benefit rate of 29% (CR+PR+SD >6 months) in evaluable patients [74]. 

The most recent trial for HSP90 inhibitors is a phase 2 trial on 
patients with advanced or metastatic HER2-positive breast cancer 
and prior trastuzumab treatment that were treated with 300 mg/m2 
retaspimycin HCl (IPI-504) combined with 6 mg/kg trastuzumab 
every three weeks [76]. Twenty-six patients were enrolled and received 

a median of three treatment cycles. The best response observed was 
stable disease in 16 patients but was not enough to warrant trial 
expansion. However, toxicity symptoms were less than expected 
leading the authors to suggest a similar trial with higher retaspimycin 
HCL dosage in hopes of obtaining a greater response rate [76]. Similar 
to HSP90 inhibitors, pre-clinical studies show that inhibition of PI3K 
with trastuzumab is greater than either treatment alone in HER2-
overexpressing cells [16,81,82]. There are several phase I/II clinical 
trials currently ongoing or recently completed (but without publication 
of results) to assess safety and efficacy of targeting HER2 and PI3K. 
These trials are using PI3K inhibitors such as GDC-0941, BKM120, 
BEZ235, or XL147 and targeting HER2 with trastuzumab or lapatinib. 
Considering the large role PI3K plays in transmitting HER2 signaling 
throughout the cell, results of these trials will provide great insight to 
the treatment of HER2-positive breast cancer. Pre-clinical and clinical 
results seem to point to the need for targeting multiple components of 
HER2-mediated cell survival mechanisms in hopes of achieving stable, 
long-term inhibition of HER2-overexpressing tumor growth.

Conclusions
The HER2 signaling network spans across many functions of the 

cell and influences cell behavior greatly, especially in breast cancer cells 
overexpressing HER2. As such, it is not surprising to find that breast 
cancer cells dependent on HER2 have utilized multiple mechanisms 
to suppress apoptosis for survival. Evidence suggests that HER2 can 
inhibit both the intrinsic and extrinsic apoptotic pathways (Figure 
1). Future studies need to elucidate mechanisms by which therapy-
resistant HER2-overexpressing cells are able to suppress apoptosis 
to further aid in designing effective clinical treatment regimens. In 
addition, the relevance of HER2 localization to the mitochondria 
should be investigated in the context of apoptosis as well as the ability 
of HER2 to directly influence apoptotic regulators. Future drug 
development for HER2-overexpressed cancers should target some of 
these well-known mechanisms by which HER2 suppresses apoptosis 
and find combinations of targets that are most effective to limit clinical 
side effects. Breast cancer death rates continue to fall [83] and future 
clinical and pre-clinical study targeting HER2 will only in aid this 
progression.
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