Qualitative Differences in T cell responses to Live, Attenuated and Inactivated Influenza Vaccines

Maryna C. Eichelberger1*, Katie H. Rivers1, Rebecca Ream1, Jin Gao1, Arash Hassantoufighi1 and Timothy M. Straight2

1Division of Viral Products, Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, FDA, Bethesda, MD, USA
2Brooke Army Medical Center, San Antonio, TX, USA

Abstract

Annual epidemics of influenza cause considerable morbidity and mortality. Trivalent inactivated vaccine (TIV) and live, attenuated influenza vaccine (LAIV) are licensed in the United States, and both are effective in preventing disease in persons younger than 49. Serum hemagglutination inhibition (HI) titers correlate with TIV but not LAIV efficacy, suggesting that additional effector mechanisms are induced to the live, attenuated vaccine and play an important role in protection against disease. For this reason there is a need to identify surrogate markers of LAIV efficacy that are easily measured in robust assays. We have compared the immunogenicity of TIV and LAIV in a small clinical study (16 age-matched volunteers in each vaccine group) by measuring serologic responses using traditional HI and NA inhibition assays as well as a sensitive cell-based neutralization assay. In addition, we evaluated cellular responses by measuring the quantity and quality of antigen-specific CD4+ and CD8+ T cells following vaccination. The quality of the CD4+ T cell response was different for each vaccination group, with CD4+ T cell proliferation and increased secretion of IFN-γ characteristic of responses following immunization with LAIV, while antigen-specific CD8+ T cells that secreted IL-5 were more frequently measured from TIV recipients. Our results suggest that sensitive, serologic assays with broad specificity, together with CD4+ T cell proliferation and IFN-γ secretion provide a more complete measure of the immunogenicity of LAIV in adults, and could be used to enhance the identification of vaccine responders.

Keywords: Influenza; Vaccine; Serology; T cell responses

Abbreviations: TIV: Trivalent inactivated vaccine; LAIV: Live, attenuated influenza vaccine; HI: Hemagglutination Inhibition; NI: Neuraminidase inhibition; AVINA: Accelerated viral inhibition assay with NA as read-out

Introduction

Influenza viruses cause annual epidemics during winter months, with substantial respiratory illness and mortality worldwide, particularly in the elderly and very young [1]. The extent of the epidemic is impacted by viral fitness and population immunity, with virus replication controlled by HA and NA-specific antibodies that block virus entry and release, and influenza-specific CD4+ or CD8+ T cells that secrete cytokines with antiviral properties, or kill infected cells [2]. Influenza has a segmented RNA genome, and consequently lacks genetic proof-reading ability. This allows selection of variants with altered antigenic structures, enabling escape from prior immunity. The licensed trivalent influenza vaccines are therefore reformulated annually to ensure inclusion of the antigenically appropriate influenza A (H1N1 and H3N2) and B virus [3].

Antibody responses to hemagglutinin (HA) as measured by HA inhibition (HI) assay, correlate with the efficacy of trivalent inactivated influenza vaccines (TIV), but the host responses that contribute to immunity in response to live, attenuated influenza vaccine (LAIV) are not well characterized. HI titers after LAIV are often not robust [4], and therefore results from this assay are likely to underestimate the vaccine’s immunogenicity. Additional antibody and T cell mechanisms are likely to contribute to protection, and may provide alternative ways to evaluate vaccine immunogenicity and efficacy. There is some evidence that the correlates of broader protection include the presence of IgA in the upper respiratory tract and antibodies with specificity for viral neuraminidase (NA) [5]. Clinical studies have also shown a correlation between IFN-γ secreting T cells and protection against disease [6], and this effector mechanism may contribute to the protection against antigenically-drifted viruses observed in children [7]. In April 2009, a swine-origin H1N1 virus emerged in humans that was antigenically distinct from other viruses previously circulating, resulting in efforts to rapidly manufacture and distribute a vaccine with matching HA and NA antigens. Both monovalent inactivated and live, attenuated vaccines were licensed and available by October 2009, and this strain was subsequently included as the H1N1 component of seasonal trivalent influenza vaccines. Clinical studies suggest that the pandemic inactivated vaccine was effective in reducing infection in older children and younger adults, while the live, attenuated vaccine had lower efficacy in adults [8]. A recent meta-analysis suggests seasonal influenza vaccine effectiveness varies between studies, and should be improved [9]. Although HI titers ≥40 are considered protective in adults, an HI titer of 85 (at time of exposure), correlates with protection of 50% of 6-72 month old children immunized with an inactivated vaccine [10]. Even the lower titer is often not achieved in young children vaccinated with LAIV, and yet this vaccine is effective...
in this population group [11]. Additional serologic or cellular measures of an immune response that correlate with protection against disease would be valuable in assessing the immunogenicity of LAIV and its potential effectiveness.

Animal models demonstrate various ways in which CD4+ T cells contribute to protection against influenza [12]. While traditionally classified as “helper” cells required to support antibody isotype switching and antibody secretion, influenza-specific CD4+ T cells may also contribute to limiting virus replication by secretion of cytokines or cytolytic activity. The interactions and soluble factors elicited during initiation of the response are different for TIV and LAIV and would be expected to induce distinct CD4+ T cell types following immunization that may dictate the quality and quantity of the influenza-specific antibody response. This hypothesis is supported by findings of influenza studies in which distinct cytokines are elicited following different immunization regimes [13,14], with antibody responses that are in line with the paradigm that murine IgG1 responses are dependent on IL-4-producing CD4+ T cells, and IFN-γ supports IgG2a responses [15]. A systems biology approach to compare human responses to LAIV and TIV showed increased amounts of mRNA for antiviral molecules in response to the infectious but not inactivated vaccine in circulating cells, and increased amounts of the chemokine IP-10 in plasma of individuals vaccinated with TIV but not LAIV recipients [16]. The antibody response was more robust following TIV, and therefore it is not surprising that this group had greater numbers of antibody secreting cells with upregulation of genes associated with antibody production; in contrast, the genes upregulated in response to LAIV were indicative of T cell, NK cell and monocyte activation. The induction of cellular responses by LAIV is confirmed in clinical studies: for example, increased numbers of influenza-specific CD4+ and CD8+ T cell responses can be measured in young children vaccinated and boosted with LAIV but not TIV [17]. A difference in the magnitude of the T cell response following LAIV and TIV is difficult to identify in adults, possibly due to the presence of a population of cross-reactive memory T cells induced by previous infection or vaccination [18].

We hypothesized that the CD4+ T cell responses following TIV and LAIV are qualitatively distinct, and may consequently need to be measured in different ways when used as an indicator of vaccine immunogenicity. In our evaluation, we measured antibody and T cell responses of age-matched healthy adults vaccinated with either TIV or LAIV in a small clinical study. Serum and peripheral blood mononuclear cells (PBMC) were collected from these vaccinees immediately before and 4 weeks after routine seasonal vaccination. Since immunodominant T cell epitopes vary significantly depending on HLA type, PBMC were stimulated by addition of whole virus to the cultures and responses were quantified by measuring T cell proliferation and cytokines secreted into the supernatant. Our results confirm the work of others showing greater HI responses after TIV than LAIV, and greater CD4+ T cell proliferation following LAIV than TIV [16]. In addition, our results show that the cellular responses after vaccination with LAIV and TIV are distinct: a greater number of LAIV recipients had increased IFN-γ secretion, whereas IL-5 secretion was more frequently increased in TIV-immunized adults.

Materials and Methods

Virus preparation

The following influenza viruses were grown in 10-day old embryonated chicken eggs: Viruses corresponding to the 2006/07 vaccine: A/New Caledonia/20/99 (H1N1) (A/NC/99), A/ Wisconsin/67/2005 X161B (H3N2) (A/WI/05), B/Malaysia/2506/04 (B/M/04), and viruses used for NA inhibition assays: H6N1_west1 and H6N1_west2. The latter 2 viruses were generated by reverse genetics as previously described [19].

Clinical study design

The clinical study population included 32 healthy consenting adults between the ages of 18 and 49 that were enrolled into the study prior to the administration of the seasonal influenza vaccine at Brooke Army Medical Center (BAMC) in November 2006. The study was approved by the BAMC Institutional Review Board, and de-identified samples were used in serologic and cellular assays in a protocol approved by the FDA Research Involving Human Subjects Committee. Volunteers were age-matched between groups receiving LAIV and TIV. Individuals with immunodeficiency or active immunosuppressive treatments (including systemic corticosteroids) were excluded from the study. Any contraindication to receiving either the TIV or LAIV was an exclusion criteria. The demographics of subjects in each vaccination group are shown in Table 1. Each volunteer donated a blood and nasal wash sample immediately before and approximately 28 days after receiving either trivalent live, attenuated influenza vaccine (Flumist, MedImmune) or trivalent inactivated vaccine (Fluzone, Sanofi-Pasteur). Blood was drawn into BD Vacutainer® CPT and BD Vacutainer® serum collection tubes. The PBMC were washed and aliquots frozen in 10% DMSO in liquid N2; serum was aliquoted and stored at -20 °C.

Antibody assays

Hemagglutination Inhibition (HI) assay: HI titers were measured as previously described [20]. Briefly, sera were treated with receptor destroying enzyme and then heat-inactivated. Non-specific agglutinins were removed by adsorption with packed washed chicken red blood cells (RBC). Serial dilutions were made in 25 μl PBS and an equal volume of PBS containing 4 HAU of virus added to each well. After 30 minute incubation, 0.5% washed chicken RBC were added, the contents of the wells mixed and then incubated at room temperature for 45 minutes before recording agglutination. The inverse of the last dilution that resulted in inhibition of agglutination was recorded as the HI titer.

Neuraminidase inhibition assay: Titration of serum NI antibodies was performed by analyzing NA activity of the HA-mismatched reassortant viruses in a 96-well plate format of the conventional thiobarbituric acid assay [19]. Briefly, serum specimens were serially diluted in PBS across wells of 96-well PCR plates. Virus suspended to
a standard NA activity level was added in equal volume, followed by feticin. After overnight incubation, liberated sialic acid was detected by chemical reactions which produce a chromophore measured at OD_{550}. NI endpoint titers were determined as the reciprocal of the highest serum dilution that inhibited NA signal by ≥ 50%.

AVINA Neutralization assay: An accelerated viral inhibition assay with NA as read-out (AVINA assay) was used to measure titers as previously described [20]. Briefly, MDCK cells were washed in serum-free medium (EMEM containing glutamine, penicillin and streptomycin), and 50 μl of a 8 x 10^3/ml cell suspension placed in wells of flat-bottomed 96-well plates. The cells were incubated overnight at 37 °C in 5% CO₂. The next day, sera were heat inactivated for 30 min at 56 °C and serial two-fold dilutions made in serum-free EMEM. Triplicate dilution wells were made of each sample, with paired sera included in the 2006/07 influenza vaccines administered to volunteers H3N2, or B) at 50 HAU/ml. The viruses used for stimulation, A/37ºC in 5% CO₂ before 100 μl supernatants were collected for cytokine analysis. An equal volume of complete media was added back to each well.

CD4+ T cell analyses:

CD4+ T cell analysis: Responses of PBMC obtained before and 4 weeks after vaccination were always compared in the same assay. Frozen cells from each time point were thawed, washed, and rested for 30 minutes in RPMI containing antibiotics (Pen/Strep), non-essential amino acids, sodium pyruvate, β-mercaptoethanol, L-glutamine, and 10% human serum (complete RPMI). Cells were labeled with CFSE by adding 10 μM to a 100 μl suspension of 3-5x10^6 cells. The cells were incubated for 10 min at 37 °C in 5% CO₂, NA substrate, 20 μM methyl-umbelliferonyl-N-acetylneuraminic acid (MU-NANA), was then added (75 μl per well). After 1 hr incubation at 37 °C, stop solution (0.1 M glycine, pH 10.7 in 25% EtOH) was added to each well (100 μl/well) and fluorescence read on a Victor V plate reader (Perkin Elmer) with excitation and emission filters of 355 nm and 460 nm respectively.

CD8+ T cell analysis:

CD8+ T cells were most efficiently stimulated by dendritic cells (DC) generated in vitro from monocytes. To generate the DC, monocytes were enriched from PBMCs using CD14 microbeads (Miltenyi Biotec, Auburn, CA) and then cultured for 6-7 days by adding 10 μM to a 100 μl suspension of 3-5x10^6 cells. The cells were washed, resuspended at 1 x 10^7 cells/ml and rested for 4 weeks after vaccination were always compared in the same assay. Wells containing complete RPMI were used as negative control; wells containing tetanus toxoid (2 μg/ml) from *Clostridium tetani* (Calbiochem, UK) and Staphylococcus enterotoxin type B (SEB, Sigma Aldrich, St Louis, MO) at 1μg/ml were used as positive controls. All cultures were run in triplicate. Plates were incubated for 3 days at 37ºC in 5% CO₂ before 100 μl supernatants were collected for cytokine analysis. An equal volume of complete media was added back to each well and on day 5 of the culture, 0.2 ng/mL IL-2 was added to each well. On day 7 of culture, cells were resuspended and then transferred to a 96-well U-bottom plate for staining with relevant antibodies.

Cytokine analysis

Cytokine analysis was performed on all samples using the Meso Scale Discovery (MSD; Gaithersburg, MD) electrochemiluminescence platform. A multiplex 96-well plate format was used, with simultaneous measurement of IL-1β, IL-2, IL-4, IL-5, IL-8, IL-10, IL-12p70, IL-13, IFNγ, and TNFα. All reagents and pre-coated plates were purchased from MSD, and the manufacturer’s protocol was followed. Briefly, all reagents were brought to room temperature prior to use, and all incubations performed at room temperature with shaking. Culture supernatants (25 μl) from PBMC that had been restimulated 3 days previously and calibrators were added to the plate and incubated for 2 hrs. After washing the plates with PBS-0.05% Tween-20, ruthenium-labeled detection antibody was added and the plates incubated for an additional 2 hours. A final wash was performed, followed by the addition of read buffer. Detection was initiated by applying voltage to electrodes located on the bottom of the plate. Intensity of light emission was captured on the MSD Sector Imager 2400. Cytokine concentrations were determined using a curve fit model with software provided with the instrument.

Statistical analysis

Geometric mean titers were calculated for all assays in which endpoint titers were assigned and statistical differences before and after vaccination determined by paired t test; differences between groups were determined by Mann-Whitney test, with statistical significance, p≤0.05.

Results and Discussion

Comparison of antibody responses following receipt of live and inactivated vaccines

Geometric mean titers (GMTs) of sera from individuals in each group are shown in Table 2 for assays conducted with the homologous antigens included in the vaccine (NC/99, WI/05 and BM/04), together with NA inhibition (NI) titers against NA of NC/99, WI/05. The cohort was not prescreened, and considering this study was performed
in a group that is offered seasonal vaccination each year, it was not surprising that baseline HI titers to H1N1 and H3N2 components were relatively high, with 'seroprotective' titers (≥40) in the majority of individuals. Individuals in this study had low pre-existing titers to the B component, possibly reflecting low circulation of this virus during the preceding influenza season and use of an antigenically-distinct strain in the previous season's vaccine (B/Shanghai/361/2002 of the B/Yamagata lineage) was used in 2005/06 season while the individuals in this study were immunized in September 2006 with a vaccine containing BM/04 of the B/Victoria lineage).

A four-fold increase in HI titer is traditionally used to evaluate vaccine immunogenicity. The problem in using this test is demonstrated in several ways in this small study: (a) there was no significant increase in HI GMT against the H1N1 component of the inactivated vaccine (p=0.12). This is more likely to reflect relatively high baseline titers that are not easily increased [21,22], than poor vaccine immunogenicity; (b) while the LAIV group had a significant increase in their HI GMT to the H1N1 component (p=0.01), and there was a trend toward significant increase in GMT against the H3N2 component (p=0.06), there was no significant increase in HI titers to the B component (p=0.35). Despite an increase in the GMTs, there were very few individuals immunized with LAIV with a 4-fold increase in HI titer to any of the 3 vaccine components, and this response rate was less than observed for TIV recipients (Table 2). This is consistent with other reports that show HI responses are more easily observed in response to TIV than LAIV [16,22,23].

Human challenge studies demonstrate increases in NI titers correlate with protection [24], and therefore we included this measure in our study. Some GMTs shown in Table 2 were previously reported [20], but are repeated here to emphasize that the response rate measured by NI assay was not significantly different between vaccine types.

Response rates were greatest when antibody titers were measured by an AVINA neutralization assay, an assay that has excellent sensitivity and includes detection of functional antibodies with specificity for both HA and NA [20]. Even with this assay, there were significantly fewer responders to each of the 3 virus strains in LAIV than TIV (Table 2).
on IFN-γ+CD8+ T cells 10 days after TIV vaccination, demonstrating the importance of examining differences in CD8+ T cells at early time points after vaccination.

Comparison of CD4+ T cell responses following receipt of live and inactivated vaccines

To determine whether influenza-specific CD4+ T cell responses differ after immunization with LAIV and TIV, and whether the CD4+ T cell response can be used as an indicator of LAIV immunogenicity, we evaluated CD4+ T cell proliferation, determined whether these cells exhibited central or effector memory cell characteristics, and identified the type of response through measurement of cytokines secreted into the supernatant. PBMCs from each of the 16 individuals in each group were labeled with CFSE and then cultured in the presence of whole virus. The percent of CFSEdimCD4+ T cells was determined by flow cytometry and used as a measure of antigen-specific cells in culture [26]. When examined as a group, there was no significant increase in the mean percent CFSEdimCD4+ T cells in response to H1N1, H3N2 or B viruses after vaccination with either TIV or LAIV (Figure 2). However, when examining the response of individuals, the fold increase in proliferation (ratio of proliferation on day 28 compared to day 0) was often greater for CD4+ T cells from volunteers in the LAIV than the TIV group (Figure 3). There was a statistically significant difference between the increased proliferation measured for H1N1-stimulated cells from LAIV than TIV recipients (p=0.02, Mann-Whitney test).

Individuals were designated as responders when the increase in proliferation after vaccination (proliferative index) was greater than 2; 31% of LAIV vs 13% of TIV recipients responded to the H1N1 antigen, 44% of LAIV vs 27% of TIV recipients responded to the H3N2 antigen, and 19% of LAIV vs 13% of TIV recipients responded to the B antigen. These results suggest that there is greater antigen-specific CD4+ T cell stimulation after vaccination with LAIV than TIV.

CD62L and CCR7 have been used to discriminate between central memory (Tcm) and effector memory (Tem) cells; Tcm are generally CD62L+CCR7+ and have high proliferative capacity but lack effector function. When Tcm are stimulated in vitro, CCR7 expression is lost, reflecting differentiation of these cells into effectors, with switched expression of chemokine receptors [27]. In contrast, Tem cells have good effector function, and are characterized as CD62L-CCR7- [28]. Our data showed the presence of influenza-specific Tcm in most volunteers prior to vaccination, and therefore CD62L and CCR7 were

Table 3: Percent of LAIV or TIV group with ≥2-fold increase in cytokine concentration post-vaccination

<table>
<thead>
<tr>
<th>Cytokine</th>
<th>LAIV (n=16)</th>
<th>TIV (n=16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-2</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>IL-4</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>IL-5</td>
<td>13</td>
<td>63</td>
</tr>
<tr>
<td>IL-10</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>IL-12</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>IL-13</td>
<td>13</td>
<td>25</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>81</td>
<td>19</td>
</tr>
<tr>
<td>TNF-α</td>
<td>44</td>
<td>56</td>
</tr>
</tbody>
</table>

* Cytokines were measured in supernatants of PBMCs stimulated with influenza virus or controls as described in Materials and Methods. Individuals with a ≥2-fold increase in cytokine concentration to any influenza vaccine antigen (H1N1, H3N2 or B) were considered responders.
not useful as biomarkers of vaccine response (results not shown).

Comparison of cytokines secreted by antigen-specific T cells following receipt of live and inactivated vaccines

Secretion of cytokines is another measure of T cell response that may be valuable in assessment of LAIV immunogenicity. The supernatants of PBMC stimulated with each viral antigen or control were harvested on day 3 and a panel of cytokines (IL-1β, IL-2, IL-4, IL-5, IL-8, IL-10, IL-12p70, IL-13, IFNγ, and TNFα) quantified. There was no significant increase in the mean cytokine concentration in supernatants before and after vaccination for the LAIV and TIV groups (results not shown). However, individual vaccinees had significant increases in cytokine expression. An individual was identified as a responder when their increase in the mean cytokine concentration in supernatants before and after vaccination was ≥2-fold greater than the expression. An individual was identified as a responder when their response was a statistically significant increase in the titer determined by non-linear regression analysis.

Correlation between cellular and humoral responses

Table 4 provides an example of HI and neutralizing antibody titers against H1N1 and H3N2 viruses, together with CD4+ T cell proliferation and IFN-γ and IL-5 secretion in response to these same antigens. These data illustrate how responses were defined, and show increases in neutralizing titer, even though small, that were defined as a response because they were statistically significant. As others have demonstrated [29], the greatest T cell responses were often observed in individuals with low baseline T cell levels. For the examples shown in Table 4, this is particularly evident in the LAIV responses against H1N1 and TIV responses against H3N2. One might expect that cytokine concentration would correlate with CD4+ T cell proliferation; this was evident in some cases (example from Table 4, volunteer LAIV-3 had increased proliferation and increased concentration of IFN-γ after vaccination), but not others (example from Table 4, volunteer LAIV-1 had increased proliferation of cells, but no increase in IFN-γ). When we used data from all 16 individuals in each group to evaluate the correlation between proliferation, cytokine secretion, and antibody titers elicited in response to LAIV and TIV, there was no obvious correlation between any antibody measurement and cellular response, and T cell proliferation was not indicative of a cytokine response. Further statistical analyses did not show a tendency toward correlation of any cytokine and the neutralizing antibody response (Spearman’s coefficient was <0.4 for all analyses), but the neutralizing antibody titer...
and magnitude of T cell proliferation appears to be inversely related; the greatest T cell proliferation was often observed for individuals with low neutralizing antibody titer prior to vaccination, and individuals with a high neutralizing antibody titer often had lower proliferative responses. However, as can be seen for some individuals listed in Table 4, there are individuals with reasonably high neutralizing antibody titers, who also had a robust CD4+ T cell proliferative response.

Evaluation of LAIV immunogenicity in adults

Our study was performed using sera and PBMC from 18-49 year olds vaccinated with either TIV or LAIV. Many of these subjects did not have a 4-fold increase in HI titer, and consideration of NI titers did not increase the percent of responding individuals. The use of AVINA, a sensitive neutralization assay developed in our laboratory [20], identified a greater number of responders in each vaccine group (Tables 2,4), with 75% of TIV recipients and 38% of LAIV recipients, responding to all 3 vaccine components. CD4+ T cell responses were more robust after LAIV than TIV (Figure 3), and inclusion of individuals with H3N2-specific T cell proliferation ≥2 fold the response prior to vaccination, resulted in the identification of 100% of TIV recipients and 63% of LAIV recipients as responders. When an increase in IFN-γ secretion was used as an additional measure of response to this vaccine component, the percent of H3N2-responding individuals was further increased to 81% (Table 3). Our results therefore suggest that in an adult population, quantification of cellular response, in particular when measured by increased cytokine secretion from antigen-specific T cells, may enhance the evaluation of immunogenicity of live, attenuated influenza vaccines.

When CD4+ T cell responses are measured, it is important to quantify the cytokine most likely to be induced by the vaccine – our results suggest the use of assays to evaluate IFN-γ following LAIV, but IL-5 following TIV. A recent study noted an absence of increased CD4+ T cell responses in young children immunized with TIV [17]. This may reflect the assay type (intracellular cytokine immunostaining and enzyme-linked immunospot assay) and cytokine targeted (IFN-γ), rather than showing an absence of antigen-specific CD4+ T cells in response to TIV. In our experience, determination of the concentration of IL-5 and IFN-γ (in addition to other cytokines) in the supernatants of antigen-activated PBMC in a multiplexed plate-based assay is a practical method to evaluate cytokine responses.

In summary, the immunogenicity of influenza vaccines in adult populations is difficult to measure due to relatively high pre-existing antibody responses, and poor increases in HI titers following LAIV. Overall, our data support measurement of neutralizing antibody titers to capture a larger number of vaccine responders. CD4+ T cell proliferation and IFN-γ secretion may be additional measures of immunogenicity that can be used to identify responders to live, attenuated influenza vaccines.

Acknowledgements

We thank Ms Brenda Torres for assistance with the collection of clinical samples and data management, Dr Matthew Sandbulte for performing NI assays, and Hana Golding for helpful suggestions during manuscript preparation.

Competing Interests

The authors declare that they have no financial competing interests. The opinions or assertions contained in this report are the private views of the authors and are not to be construed as reflecting the views of the Army Medical Department, the U.S. Department of the Army, the U.S. Department of Defense and the U.S. Food and Drug Administration.

References

18. Subbaramanian RA, Bashar S, Shata MT, Brady RC and Bernstein DI (2010) Pandemic and Seasonal H1N1 Influenza Hemagglutinin-Specific T Cell

