Production of Anchovy and Mussel Pastes as Appetizer

Berna Kilinc* and Volga Can Sahin
Fisheries Faculty, Fish Processing Technology Department, Ege University, Bornova-Izmir, Turkey

Abstract

Anchovy (Engraulis encrasicholus) is a species which mostly caught from Black sea by seine catch. This species represents the majority of the marine species consumed in Turkey. Mussel (Mytilus galloprovincialis) is a bivalve that has long been used as a marine food by boiling and stuffing with rice. It is harvested from Mediterranean, Aegean and Marmara sea and is mainly consumed in coastal towns. In this study, anchovy and mussel were used for raw materials. Subsequent to filleting the anchovy and extracting the meat of mussel, these two species were boiled in salty water and grinded. Ultimately, they were introduced separately to the mix of tomato paste, red pepper paste, swatted garlic, cumin, fenugreek powder, ground pepper, salt and olive oil. On account of its consistence, this developed product can be conserved in a paste tube as well as it can be bottled in a glass jar to preserve. The paste is suitable specially for use as appetizer in every repasts and can also be used as consistent intensifier and flavouring supplement during the cooking process. Aside from the production, the shelf life of the product was appointed by routine microbiological test methods (total aerobic mesophilic, psychrotrophic, coliform, Enterobacteriaceae, Micrococcus, Staphylococcus bacteria, yeast and moulds counts) and also the species of microorganisms found in pastes were identified. This is the first report about anchovy and mussel pastes describing microbiological flora.

Keywords: Anchovy; Mussel; Paste; Shelf life; Microbiology

Practical Application

This novel products promise an easy method to prepare appetizers from anchovy and mussel. It is quite possible to produce this in domestic environment, using only simple kitchen materials. The products can be considered as fairly convenient for working class families with their relatively long shelf life duration (6-7 weeks). Although well sanitized utensils and use of latex gloves are highly recommended to minimize human-induced contamination such as Staphylococcus spp. Within better environmental conditions and with less human impact, these products promise new aquatic food products for the food industry.

Introduction

Fish spoilage results from three basic mechanisms: Enzymatic autolysis, oxidation, microbial growth. Low temperature storage and chemical techniques for controlling water activity, enzymatic, oxidative and microbial spoilage are the most common in the industry today [1]. Spoilage of fresh and lightly preserved fish products is caused by microbial action. Shewanella putrefaciens and Pseudomonas spp. are the specific spoilage bacteria of iced fresh fish regardless of the origin of the fish. Modified atmosphere stored marine fish from temperate waters are spoiled by the CO2 resistant Photobacterium phosphoreum whereas Gram-positive bacteria are likely spoilers of CO2 packed fish from fresh or tropical waters. Fish products with high salt contents may spoil due to growth of halophilic bacteria (salted fish) or growth of anaerobic bacteria and yeasts (barrel salted fish). Whilst the spoilage of fresh and highly salted fish is well understood, much less is known about spoilage of lightly preserved fish products. It is concluded that the spoilage is probably caused by lactic acid bacteria, certain psychrotrophic Enterobacteriaceae and/or Photobacterium phosphoreum [2]. The suggested process would address antimicrobial activity as well as destructive oxidation of the desired lipids and fats. However, more efforts are required to understand the role of proximate composition of fish, post-harvest history, environmental conditions, initial microbial load, type and nature of bacteria and their interaction in order to optimize the shelf-life of fish. Proper handling, pre-treatment and preservation techniques can improve the quality fish and fish products and increase their shelf life [3]. Fermentation is one of the preservation techniques. Fermented fish have, for many years, been considered as a Southeast Asian product. These products are highly salted and fermented until the fish flesh is transformed into simpler components [4]. The potential for improving the nutritional quality and shortening the processing time necessary to produce these sauces could be realized by developing controlled microbial fermentations using pure cultures of the appropriate microorganisms. To identify what these are, it would be necessary to survey the microflora of different fish sauces and determine microbial successions [5].

There are many studies related to fish and fishery products in literature [4-12]. However, production of anchovy and mussel pastes as appetizer are novel products for literature. The aim of this study was to produce new fishery products from minced anchovy and mussel, as well as determining the microbiological flora of these pastes.

Materials and Methods

Materials

Materials that are used respectively to produce anchovy and mussel pastes as appetizer are;

- Filleted raw anchovy meat (300 g)
- Sorted raw mussel meat (300 g)
- 2 × Canned tomato paste (250 g)
- 2 × Canned red pepper paste (250 g)
- 2 × 15 cloves of garlic (Allium cepa)
- 2 × Virgin olive oil (75 ml)

*Corresponding author: Berna Kilinc, Fisheries Faculty, Fish Processing Technology Department, Ege University, Bornova-Izmir, Turkey, Tel: +902323111010; E-mail: bernakilinc@ege.edu.tr

Received September 16, 2015; Accepted October 06, 2015; Published October 15, 2015

Copyright: © 2015 Kilinc B, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
2 × Common salt (1 teaspoon)
2 × Flaked red pepper (1 teaspoon)
2 × Black pepper (1 teaspoon)
2 × Cummin powder (2 teaspoons)
2 × Fenugreek powder (25 grams)

Ingredients composition is shown at Table 1 as percentages.

Methods

Production of minced anchovy and mussel: The process of producing anchovy and mussel pastes has not been conducted in an aseptic laboratory, instead, a regular kitchen has been used to prepare and mix the ingredients. The purpose was to see the shelf life of these products in refrigerated conditions (4±4°C) when processed by ordinary people in domestic environment. None of the equipment that used to prepare the anchovy and mussel pastes were sterilized, whilst they were sanitized by commercial cleanings. For the supply of raw anchovy and mussel meat (already sorted, ready to process), a regular wholesale market hall is used. Subsequent to filleting operation of anchovy, and mussel pastes. On the first week; 4.02 cfu/g for anchovy paste and 5.00 log cfu/g for mussel paste on first week. On the second week; 4.16 log cfu/g for anchovy paste and 5.10 log cfu/g for mussel paste. On the third week; 4.28 log cfu/g for anchovy paste and 5.10 log cfu/g for mussel paste. The growth showed fairly little difference for either weeks and groups of anchovy and mussel pastes. On the fourth week; 4.40 log cfu/g for anchovy paste and 5.12 log cfu/g for mussel paste. The growth showed fairly little difference in terms of storage. It started with 4.28 log cfu/g for anchovy paste and 5.00 log cfu/g for mussel paste on first week. On the week 2; the numbers were not much different; 5.04 log cfu/g for anchovy paste and 5.48 log cfu/g for mussel paste. Staphylococcus spp. counts showed fairly little difference for either weeks and groups of anchovy and mussel pastes. On the first week; 4.02 cfu/g for anchovy paste and 3.99 cfu/g for mussel paste. For the second week; the Staphylococcus spp. loads were 4.52 cfu/g and 4.74 cfu/g for anchovy and mussel pastes, respectively. Although Staphylococcus spp. are commonly found in most kinds of food, they are not in natural microflora of aquatic species. It is only possible to find Staphylococcus spp. in aquatic products when there is human impact or there is a non-aquatic food supplementation [9]. Therefore, it is recommended to produce this kind of products in more sanitized conditions and with less human impact.

Findings of a study about the pastries which were prepared experimentally have been mixed with the various cemen pastes are maintained using C. Violet Red Bile Agar (VRB, LABM, LAB031) was used. Inoculated petri dishes were incubated 48 hours at 30°C[17].

Bacterial identification: The isolated all bacteria species were identified according to method of API system (biomerieux, France). Isolated Micrococcus bacteria was identified by using API E, isolated yeast and mould counts were identified by using API CAUX. Staphylococcus bacteria count was identified by using API Staph test kits.

Statistical analyses: SPSS version 11 statistical package program for social science was used for statistical analyses of anchovy and mussel pastes. One-way analysis of variance was done for determining significant differences with groups. No significant differences indicated as (p>0.05). Significant differences indicated as (p<0.05).

Results and Discussion

Microbiological analysis

Microbiological changes of anchovy and mussel pastes are shown in Table 2. Enumeration of total mesophilic bacteria load of pastes showed that bacteria levels increased during fermentation period. Numbers of total mesophilic bacteria in the anchovy pastes ranged from 4.48 log cfu/g to 6.92 log cfu/g after 8 weeks of fermentation. Total mesophilic bacteria count of mussel pastes increased from 4.86 log cfu/g to 6.89 log cfu/g at the end of 8 weeks. No significant (p<0.05) changes in total mesophilic bacteria counts between the groups occurred during fermentation. But according to time of fermentation, these differences were significant (p<0.05) for two groups. Psychrotrophic bacteria counts were determined after 6 weeks of fermentation. On week 8; psychrotrophic bacteria count increased to 4.78 log cfu/g and 4.66 log cfu/g for anchovy and mussel pastes, respectively. Enterobactericeae and coliform bacteria could not be isolated throughout the period of fermentation for two groups due to slowing-down effect on microbiological growth of chopped garlic depending on the garlic concentration, along with some other spices such as black and red pepper [18,19]. Yeast and mould counts of anchovy and mussel pastes ranged between 2.58 log cfu/g (week 2, anchovy paste) and 1 >log cfu/g. No harmful growth (p<0.05) was detected for yeast and mould count during the fermentation for both products. The reason why there was no excessive yeast and mould growth is similar with the reason why there was no Enterobactericeae and coliform bacteria growth; it is due to the inhibiting effect of garlic [20]. Micrococcus spp. growth showed little difference in terms of storage. It started with 4.28 log cfu/g for anchovy paste and 5.00 log cfu/g for mussel paste on first week. On the week 2; the numbers were not much different; 5.04 log cfu/g for anchovy paste and 5.48 log cfu/g for mussel paste. Staphylococcus spp. counts showed fairly little difference for either weeks and groups of anchovy and mussel pastes. On the first week; 4.02 cfu/g for anchovy paste and 3.99 cfu/g for mussel paste. For the 8th week; the Staphylococcus spp. loads were 4.52 cfu/g and 4.74 cfu/g for anchovy and mussel pastes, respectively. Although Staphylococcus spp. are commonly found in most kinds of food, they are not in natural microflora of aquatic species. It is only possible to find Staphylococcus spp. in aquatic products when there is human impact or there is a non-aquatic food supplementation [9]. Therefore, it is recommended to produce this kind of products in more sanitized conditions and with less human impact.
about high number of Staphylococcus species found in pastes with this respect. Staphylococcus species were the predominant organisms counts obtained after six days of fermentation were 6.23×10⁵ cfu/g and sp. were enumerated and characterized. Total heterotrophic bacterial Microorganisms involved in the natural fermentation of Sardinella clearly a factor that will influence the effectiveness of bacteriocinogenic sausages. In this study; addition of spices to the sausage mixture is enhanced good colour, aroma and taste. Verluyten et al. [22] studied during fermentation period. The use of spices in fermentation of sardine and yeast-mould counts were not detected Staphylococcus aureus were determined lower bacteria counts than fish sauces without spices. Kilinc [8]. In this study, authors reported that the fish sauces with spices determined with this study about inhibiting Enterobactericeae. Another in all phases of first stage of pastrami samples. Similar results were shown [21]. The count of total microorganisms was between 2.8×10⁷ and 7.0×10⁷/g on the first day, and between 2.2×10⁷-3.4×10⁷/g on the 60th day. The number of yeast was between 8.2×10³ and 1.4×10⁷/g on the first day, and between 3.8×10³ and 1.2×10⁴/g on the 60th day. The number of Staphylococcus-Micrococcus microorganisms was between 5.1×10⁶-6.1×10⁶/g on the first day, and between 7.6×10⁴ and 5.8×10⁸/g on the 60th day. The number of Enterobactericeae microorganisms were not cultivated in all phases of first stage of pastrami samples. Similar results were determined with this study about inhibiting Enterobactericeae. Another study about production of sardine fermented fish sauce was done by Kilinc [8]. In this study, authors reported that the fish sauces with spices were determined lower bacteria counts than fish sauces without spices. Staphylococcus aureus and yeast-mould counts were not detected during fermentation period. The use of spices in fermentation of sardine enhanced good colour, aroma and taste. Verluyten et al. [22] studied the effect of different spices relevant for the production of fermented sausages. In this study; addition of spices to the sausage mixture is clearly a factor that will influence the effectiveness of bacteriocinogenic starter cultures in fermented-sausage manufacturing. In another study, Microorganisms involved in the natural fermentation of Sardinella sp. were enumerated and characterized. Total heterotrophic bacterial counts obtained after six days of fermentation were 6.23×10⁶ cfu/g and 5.65×10⁶ cfu/g for fish treated with 10 and 15% (w/v) sodium chloride, respectively. Staphylococcus species were the predominant organisms isolated from the fermenting fish [5]. Similar results were determined about high number of Staphylococcus species found in pastes with this investigation. Lactic acid fermented fish were done by using sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus). In this study it was determined that only lactic acid, only lactic acid bacteria or lactic acid and lactic acid bacteria together can be used for extending the shelf-life of fish products [23]. Tayar [11] studied the effect of various heating processes on Turkish sausages. This author reported that from microbiological point of view during the heat treatment in which core temperature was 62°C, coliform bacteria was destroyed and in important decline in the total bacteria counts were observed.

According to Turkish Food Codex [24]; for fermented meat products, mould counts must not exceed the limiting value of 3.0 cfu/g and Staphylococcus aureus must be limited to 3.0 cfu/g. There is no specific limitation for total aerobic mesophilic bacterial load for fermented meat derivatives. However, the limit value for total aerobic mesophilic bacterial load of refrigerated meat products is 6.0 log cfu/g. In our products, upper limits for yeast and mould count was 2.58 cfu/g for anchovy paste (on second week) and 2.02 log cfu/g for mussel paste (on second week). Amongst the Staphylococcus spp. isolates of our products, no Staphylococcus aureus were detected. As for the total mesophilic bacteria counts, the anchovy paste was on the 8th week, the due date of mussel paste was found as 2th week. On week 7; total mesophilic bacteria counts for anchovy paste was 5.69 log cfu/g and for mussel paste, it was 6.29 log cfu/g. On week 8; this counts were 6.29 log cfu/g and 6.89 log cfu/g for anchovy paste and mussel paste, respectively.

Bacterial identification
In this study, identified bacteria species showed no difference

<table>
<thead>
<tr>
<th>Percentage</th>
<th>30%</th>
<th>25%</th>
<th>7%</th>
<th>2.5%</th>
<th>1%</th>
<th><1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials</td>
<td>-Meat</td>
<td>-Tomato pure</td>
<td>-Garlic</td>
<td>-Fenugreek powder</td>
<td>-Cummin powder</td>
<td>-Common salt</td>
</tr>
<tr>
<td></td>
<td>-Red pepper pure</td>
<td>-Virgin olive oil</td>
<td></td>
<td></td>
<td></td>
<td>-Black pepper</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-Flaked red pepper</td>
</tr>
</tbody>
</table>

Table 1: The percentages of Ingredients for both products

<table>
<thead>
<tr>
<th>Storage (Week)</th>
<th>Groups</th>
<th>Total Mesophilic Bacteria Count (log cfu/g)</th>
<th>Micrococcus Bacteria Count (log cfu/g)</th>
<th>Staphylococcus Bacteria Count (log cfu/g)</th>
<th>Yeast & Mould Counts (log cfu/g)</th>
<th>Psychrotrophic Bacteria Count (log cfu/g)</th>
<th>Coliform Bacteria Count (log cfu/g)</th>
<th>Enterobacteriaceae Bacteria Count (log cfu/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. A</td>
<td>4.48 ± 0.04⁸</td>
<td>4.28 ± 0.04⁸</td>
<td>4.02 ± 0.14⁸</td>
<td><1⁸</td>
<td><1⁸</td>
<td><1⁸</td>
<td><1⁸</td>
<td><1⁸</td>
</tr>
<tr>
<td>M</td>
<td>4.86 ± 0.52⁸</td>
<td>5.00 ± 0.15⁸</td>
<td>3.99 ± 0.10⁸</td>
<td>1.89 ± 0.11⁸</td>
<td><1⁸</td>
<td><1⁸</td>
<td><1⁸</td>
<td><1⁸</td>
</tr>
<tr>
<td>2. A</td>
<td>5.26 ± 0.40⁸</td>
<td>4.74 ± 0.06⁸</td>
<td>4.20 ± 0.06⁸</td>
<td>2.58 ± 0.19⁸</td>
<td><1⁸</td>
<td><1⁸</td>
<td><1⁸</td>
<td><1⁸</td>
</tr>
<tr>
<td>M</td>
<td>5.32 ± 0.08⁸</td>
<td>5.00 ± 0.11⁸</td>
<td>4.02 ± 0.05⁸</td>
<td>2.02 ± 0.70⁸</td>
<td><1⁸</td>
<td><1⁸</td>
<td><1⁸</td>
<td><1⁸</td>
</tr>
<tr>
<td>3. A</td>
<td>5.17 ± 0.05⁸</td>
<td>5.28 ± 0.10⁸</td>
<td>4.43 ± 0.06⁸</td>
<td><1⁸</td>
<td><1⁸</td>
<td><1⁸</td>
<td><1⁸</td>
<td><1⁸</td>
</tr>
<tr>
<td>M</td>
<td>5.33 ± 0.11⁸</td>
<td>5.32 ± 0.16⁸</td>
<td>3.96 ± 0.17⁸</td>
<td>1.35 ± 0.37⁸</td>
<td><1⁸</td>
<td><1⁸</td>
<td><1⁸</td>
<td><1⁸</td>
</tr>
<tr>
<td>4. A</td>
<td>5.42 ± 0.05⁸</td>
<td>4.78 ± 0.02⁸</td>
<td>4.21 ± 0.04⁸</td>
<td><1⁸</td>
<td><1⁸</td>
<td><1⁸</td>
<td><1⁸</td>
<td><1⁸</td>
</tr>
<tr>
<td>M</td>
<td>5.44 ± 0.04⁸</td>
<td>5.13 ± 0.10⁸</td>
<td>3.96 ± 0.16⁸</td>
<td><1⁸</td>
<td><1⁸</td>
<td><1⁸</td>
<td><1⁸</td>
<td><1⁸</td>
</tr>
<tr>
<td>5. A</td>
<td>5.40 ± 0.07⁸</td>
<td>4.97 ± 0.04⁸</td>
<td>4.56 ± 0.04⁸</td>
<td>1.56 ± 0.07⁸</td>
<td><1⁸</td>
<td><1⁸</td>
<td><1⁸</td>
<td><1⁸</td>
</tr>
<tr>
<td>M</td>
<td>5.55 ± 0.14⁸</td>
<td>5.06 ± 0.09⁸</td>
<td>4.34 ± 0.07⁸</td>
<td>1.35 ± 0.37⁸</td>
<td><1⁸</td>
<td><1⁸</td>
<td><1⁸</td>
<td><1⁸</td>
</tr>
<tr>
<td>6. A</td>
<td>5.10 ± 0.62⁸</td>
<td>4.96 ± 0.05⁸</td>
<td>4.64 ± 0.13⁸</td>
<td><1⁸</td>
<td>4.48 ± 0.07⁸</td>
<td><1⁸</td>
<td><1⁸</td>
<td><1⁸</td>
</tr>
<tr>
<td>M</td>
<td>5.83 ± 0.07⁸</td>
<td>5.11 ± 0.07⁸</td>
<td>4.44 ± 0.06⁸</td>
<td>1.39 ± 0.55⁸</td>
<td>3.39 ± 0.15⁸</td>
<td><1⁸</td>
<td><1⁸</td>
<td><1⁸</td>
</tr>
<tr>
<td>7. A</td>
<td>5.69 ± 0.10⁸</td>
<td>5.11 ± 0.06⁸</td>
<td>5.65 ± 0.16⁸</td>
<td><1⁸</td>
<td>6.46 ± 0.15⁸</td>
<td><1⁸</td>
<td><1⁸</td>
<td><1⁸</td>
</tr>
<tr>
<td>M</td>
<td>6.29 ± 0.12⁸</td>
<td>5.41 ± 0.51⁸</td>
<td>4.44 ± 0.11⁸</td>
<td>1.36 ± 0.39⁸</td>
<td>6.65 ± 0.05⁸</td>
<td><1⁸</td>
<td><1⁸</td>
<td><1⁸</td>
</tr>
<tr>
<td>8. A</td>
<td>6.92 ± 0.04⁸</td>
<td>5.04 ± 0.16⁸</td>
<td>4.52 ± 0.08⁸</td>
<td>1.20 ± 0.17⁸</td>
<td>4.78 ± 0.02⁸</td>
<td><1⁸</td>
<td><1⁸</td>
<td><1⁸</td>
</tr>
<tr>
<td>M</td>
<td>6.89 ± 0.11⁸</td>
<td>5.48 ± 0.22⁸</td>
<td>4.74 ± 0.17⁸</td>
<td>1.42 ± 0.48⁸</td>
<td>4.66 ± 0.08⁸</td>
<td><1⁸</td>
<td><1⁸</td>
<td><1⁸</td>
</tr>
</tbody>
</table>

A stands for anchovy paste M stands for mussel paste
Different capital letters (A,B,C,D) stand for significant differences (p >0.05) dependent on storage
Different small letters (a, b) stand for significant differences (p >0.05) between groups for each week
depending on groups. Identified bacteria species and ratios were the same for both anchovy and mussel pastes. For Enterobactericeae spp., only determined bacteria species was Erwinia spp with a ratio of 80%. Staphylococcus bacteria species were determined as Staphylococcus sciuri and Staphylococcus auricularis with 49.9% and 42.9% ratios, respectively. For the yeasts and moulds identification, determined species throughout the fermentation are identified as Cryptococcus spp. with a ratio of 80%, Cryptococcus humicola with a ratio of 68.8% and Trichosporon mucoides with a ratio of 30.8%.

Kuda et al. [25] studied fish nukazuke is salted and long-fermented fish with rice bran. Histamine (Hm) forming bacteria were isolated from fish nukazuke. They screened bacteria that can inhibit the Hm forming (Hm suppressive) bacteria. Both of the isolates were identified to Tetragenococcus halophilus. Paluda Müller et al. [26] reported that Thai fermented fish product prepared from snakehead fish, salt, palm syrup and roasted rice. In fermented fish product 95% of the yeasts as Zygosacharachy mycesrouxii was identified as well as lactic acid bacteria. Jeotgal or jeot, a traditional Korean salted and fermented food, is made by adding 20–30% (w/w) salt to various types of sea food worked by Guan et al. [27]. Eleven genera were isolated from both jeotgal samples, including species in the genera Staphylococcus, Bacillus, Halomonas, and Kocuria, with Staphylococcus spp. constituting the highest number. Staphylococcus spp. may not be hugely involved in proteolysis, but they may play a significant role in the ripening of jeotgal. Bacteria of the genus Bacillus and its relative sand of the genus Staphylococcus may be the major organisms involved in jeotgal fermentation. These studies show resemblance with our study in terms of Staphylococcus spp. and yeast loads.

Conclusion

In this study, shelf life of anchovy paste was detected as 7 weeks, whereas the shelf life of mussel paste was detected as 6 weeks according to microbiological analysis. Bacteria species identification showed resemblance for both products. Identified bacteria species were: Erwinia spp., Staphylococcus spp., Cryptococcus spp. and Trichosporon spp. Anchovy and mussel pastes are new products for literature. This is the first report about anchovy and mussel pastes describing microbiological flora and shelf life. For this reason, the results of this study will be very helpful for food industry and readers.

References

23. Kılınc B, Çakil Ş (2011) Lactic acid fermentation with sardine (Sardina pilchardus) and anchovy (Engraulis encrasicholus) products produced from fermented fish species. 16th National Fisheries Symposium, Istanbul.