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Abstract
The ever increasing potentialities of petroleum plastics with respect to lack of degradation, inability to recycle 

and the toxic effects of incineration, has urged to design biodegradable polymers, often called Green Plastics. These 
biodegradable plastics are promiscuous due to their analogous properties and environmental friendliness. Bacterial 
factories and Plants being their natural sources for production made them a promiscuous solution. Fermentation is 
the procedural technology used with certain fillers that are known to enhance the chemo-mechanical properties. The 
process at the industrial level is not well accepted due to the certain lacunas. The review mainly focuses to assimilate 
a few researches that implicate the best known process parameters for Batch, Fed-batch, Continuous and Two stage 
modes of fermentation without compromising the downstream processing at commercial level.
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Introduction
In the world of advancements today, almost every product is 

constituted of some kind of polymer. There is no doubt that the need 
for polymers and thus the products they constitute is ever increasing. 
Till date, these needs are being fulfilled by synthetic polymers (often 
called plastics), which are produced from petrochemicals [1] which 
makes them eco- ‘unfriendly’. The inherent nature of petroleum derived 
products, calls for a serving approach, in the form of Biopolymers- 
polymers derived from living organisms/renewable resources [2]. To 
satisfy the consumers and get acceptability substitute needs to exhibit 
similar (if not identical) characteristics to the product being replaced 
and so it is for biopolymers while replacing the synthetic polymers 
properties, ranging from molecular weight, density, melting point, 
crystallinity, glass transition temperature to O2-permeability, UV-
resistance, resistance to solvents, tensile strength and elongation to 
break [3]. Fortunately, a special class of biopolymers called PHAs shows 
some of the extraordinary similarities to the well known synthetic 
polymers like polypropylene, polyethylene etc. [4], moreover, their 
biodegradability has made them renowned as biopolymers of today.

History and chemical nature

In 1920, a French microbiologist Maurice Lemoigne discovered 
a gram positive bacterium Bacillus megaterium [5] that accumulated 
intracellular granules of polyester called poly(3-hydroxybutyrate) [6]. 
Table 1 enlists different types of PHA.

PHAs are polymeric compounds biosynthesized by a variety of gram 
positive and gram negative bacteria [7], as carbon and energy reserves 
(often called carbonosomes) [8]. Structurally, R-hydroxyalkonic acids 
act as the monomeric form of PHAs. 

Natural sources of production

Polyhydroxyalkanoates are produced in microbes. Although 
efforts have been made from plant cells through transgenics, but has 
not achieved much success because low yields of less than 10 % (w/w) 
of dry cell weight can be sustained whereas, high yield limits growth 
and development of plants [9,10]. On the other hand, PHAs can be 
accumulated upto 90% (w/w) in bacterial cells [10] and are thus a 

priority because of the ease in culturing and economical, in contrast to 
the complex plant system [10].

Bacterial Polymer Production
PHAs accumulation is an inherent response to the stress conditions 

faced by bacterial cells [11,12], these are generated in vitro by exposing 
bacteria to nutrient limitations, due to which they switch their 
metabolic pathways and cause PHA production as their carbon and 
energy reserves [13], to name a few of these substrates are bagasse [14], 
molasses [15,16], corn cob [14] and other agricultural wastes [4,17]. 
In fact significant PHA production has been reported among various 
bacterial strains when growing on kitchen waste [18], industrial wastes 
[7,14,19], crude and edible oils as carbon sources [20-23]. The costing 
of these substrates is low or null, making the process cost effective at the 
upstream level. The Figures 1 and 2 depicts the biopolymer synthesis 
from bacteria.

PHA production has been reported in wide variety of bacterial 
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PHAs
Number of Carbon 

Atoms in Monomers of 
PHA

Examples

Short chain length PHAs (scl-
PHAs) 3 – 5 P(3HB)

P(4HB)

Medium chain length PHAs 
(mcl-PHAs) 6 – 14

P(3HHx)
P(3HO)

P(3HHx-co-3HO)

Table 1: Types of PHAs [2].
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strains, the most commonly studied genera are Bacillus sp, Alcaligenes 
sp, Pseudomonas sp, Aeromonas sp, Rhodopseudomonas sp, Halomonas 
sp, Transgenic Escherichia coli, and Burkholderia sp [7,9]. Table 2 and 
Table 3 show carbon sources based feeding regimes used by different 
strains with the PHA Content. The various stress conditions trigger 
PHA production [11,12]; thus, variation in process parameters is 
required [24-26] to induce the biosynthesis. 

Process parameters

Substrate: Carbon source is an important requisite but is not 
involved in induction of PHA biosynthesis, although is required for 
polymer production maximization [54,55]. Glucose is the preferred 
substrate at industrial scale, many alternatives have also been 
employed, like sucrose as stated in the research by Azhar et al. of Ain 
Shams University, Egypt with highest growth and polymer production 
by Alcaligenes latus [56]. Even a broad spectrum of substrates, namely, 
starch, sucrose, lactose, maltose, galactose, mannose, mannitol, 
fructose, glycerol, ethanol, lactic acid, malic acid, acetic acid and butyric 
acid have been used to compare with glucose [56]. In another report 
by Poonsuk Prasertsan, the halotolerant bacterial strains Rhodobacter 
sphaeroides has exhibited maximum growth and polymer production 

on acetate as a carbon source compared to glucose and fructose [25]. 
The conclusion deduced glucose, fructose and acetate as good substrates 
for cellular growth and polymer formation, but a combination of these 
substrates did not give good results [25]. 

Nitrogen and phosphate: A research aimed at the optimal 
requirement of phosphate and nitrogen in the media (specific or 
complex) to increase the production tested the growth of Aeromonas 
hydrophila on gluconate enriched MS media containing different 
phosphate concentrations as (Table 4). It was clearly inferred that a 
concentration of 11.66 mM phosphate in the media provided a good 
nutrient deficiency to the bacteria leading to a high PHA concentration 
[44]. This concentration of phosphate was 1/3 of the normal phosphate 
concentration used in the media for the bacterial growth. Table 4 
illustrates the effect of limiting phosphate concentrations, with nitrogen 
deficiency in media, on PHA production [44].

Although the nutrient limitation is a prerequisite for PHA 
production, but, in a recent report on Cupriavidus necator in several 
nutrition media (Mineral medium, Bonnarme’s medium, Mandels’ 
medium and Luria broth Mineral medium, Bonnarme’s medium, 
Mandels’ medium and Luria broth) with 10g/l sodium glutamate not 

Figure 1: Biopolymer synthesis.
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only enhanced the overall productivity by 33 times but also decreased 
the need for limiting nutrients in media [57]. 

pH and temperature regimes: The pH and Temperature optima 
completely depend on the nature of organisms. According to Palleroni 
et al. [58] and recent studies done by Wei et al. [26], the optimal pH 
range for the growth of bacteria involved in the production of PHAs 
is 6.0 to 7.5 [26,58]. The temperature requirement for the optimal 
production is 30 to 37°C as reported by Yu-Hong Wei et al. [26]. These 
are the generalized range for fine bacterial growth.

Oxygen microenvironment: Oxygen limitation is regarded 
amongst the effective way of enhancing PHA accumulation, involves 
volumetric oxygen transfer coefficient (kLa), reducing (kLa) of the 
system significantly enhance the PHA yield of the bacterial cell, even 
at agitation speed of 300 rpm, the percentage PHA derivate was 
29.8% whereas it was 50.7 % at 50 rpm [24]. Since KLa is lower at low 
agitation rate, indicates that increasing the oxygen stress enhances 
PHA production.

Modes of culture 

Four modes of operations are used, these are Batch, Fed batch, Two 
stage and continuous; although Batch process has been the mode of 
choice for most of the research and commercial production. 

Batch: The batch cultivation is performed from range starting 
from 100ml working volume at laboratory scale [16,28] to 15000L 
working volume at industrial scale [59]. Alcaligenes latus (BIOPOL, 
the first commercially produced biopolymer from Alcaligenes latus 
[60]), Ralstonia eutropha, Aeromonas hydrophila, Burkholderia sp. and 

Pseudomonas putida have been given equal importance for polymer 
production [9]. Maximum PHA production is reported between 96 
to 120 hours in almost all species, where glucose and sucrose have 
been the substrate of choice (in shake flask batch mode Alcaligenes 
latus exhibited 45.96 % and 40.14 % PHB content, and in 2 L reactor 
it exhibited 56.59 % and 47.53% PHB content using sucrose and 
glucose as substrate, respectively), with ammonium sulfate as best 
nitrogen source [56,61]. A 2L batch operation yielded maximum PHB 
content after 80 hours of operation, after which the content decreased 
(probably due to hydrolysis during stationary phase), suggesting the 
critical importance of harvesting time [61].

Fed batch: Basic aim of using the fed-batch mode is to increase the 
biomass with respect to batch mode and is achieved by controlling the 
intermittent feeding to reduce the substrate inhibition without affecting 
the growth of the microbe(s). The basic causative agents of inhibition 
are the organic acids which in high concentration lead to the collapse 
of the transmembrane pH gradient of the bacterial cells and a low 
concentration supports the cell growth and hence PHA accumulation 
[62]. Two feeding rates for organic acid concentration variation were 
studied with constant and varying rate on Ralstonia eutropha. Three 
constant feeding rates of 1.2 g/l, 1.8 g/l and 2.5 g/l achieved greater 
biomass(RBM) and PHA content in case of slow feeding rate with 
zero residual acids, while it ceased at 24th and 36th hours respectively 
at intermediate feeding, with a residual acid of 2.02g/l and at 18th and 
36th hour at fast feeding rate, with a residual acid of 4.02g/l suggesting 
that cell growth and production could only continue under a low level 
of residual acids in the medium, while PHAs accumulate at higher acid 
concentration. Thus it may be considered essential to feed acids during 

Figure 2: Systems for Biopolymer Synthesis.
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Strain Carbon Source Used Polymer 
Yield References

Aeromonas sp.

Municipal waste water 11.11%

[27] 
Palm oil mill effluent 22.97%

Glycerol 19.82%
Molasses 20.09%

Alcaligenes sp.

Municipal waste water 41.11%

[27]
Palm oil mill effluent 11.69%

Glycerol 2.33%
Molasses 0.00%

Bacillus sp.

1:1 mixture of WBH and RBH 59% [28] 
Municipal waste water 43.95%

[27] 
Palm oil mill effluent 58.925%

Glycerol 25.00%
Molasses 48.01%

Bacillus cereus

Municipal waste water 38.07%

[27] 
Palm oil mill effluent 64.09%

Glycerol 0.00%
Molasses 23.94%

Bacillus 
licheniformis

Municipal waste water 40.97%

[27] 
Palm oil mill effluent 62.96%

Glycerol 1.69%
Molasses 43%

B. subtilis

Municipal waste water 46.71%

[27] 
Palm oil mill effluent 50.00%

Glycerol 18.92%
Molasses 16.13%

Bacillus 
megaterium Sugarcane molasses 43% [15] 

Burkholderia 
cepaca Glycerol 31.35% [29] 

Chromobacterium 
sp.

Municipal waste water 25.00%

[27] 
Palm oil mill effluent 40.89%

Glycerol 11.86%
Molasses 27.85%

Cupriavidus 
taiwanensis Gluconic acid 72% [26] 

Escherichia coli
Xylose 59 ± 4% [30] 

Sodium butyrate 7.81 ± 
0.21% [31] 

Hydrogenophaga 
pseudoflava Lactose 29.8 ± 

3.0% [13] 

Haloarcula 
hispanica 

(previously 
deposited as 

Halobacterium 
hispanicum)

YE/Glucose 2.4% [32] 

Haloarcula 
marismortui YE/Glucose 21% [33] 

Haloarcula sp. Glucose 63% [34] 
Haloarcula japonica Glucose 0.5% [35] 

Halobiforma 
haloterrestri Butyric acid 40% [36] 

H. haloterrestris YE 15% [36]
Haloferax 

mediterranei YE/Glucose 17% [32]

H. mediterranei Starch 6.48g/L [37]
Haloferax gibbonsii YE/Glucose 1.2% [32]
Haloferax volcanii YE/Glucose 7% [32]

Haloterrigena 
hispanica YE/Casamino acids 0.14% [38,39]

Halopiger 
aswanensis YE/Na acetate/Butyric acid 34% [40,41]

Pseudomona 
oleovorans Gluconic acid 0.9±0.1% [26] 

Pseudomonas 
putrefaciens Corn cob 66.67% [14]

Pseudomonas sp.

Municipal Waste Water 61.05%

[27] 
Palm oil mill effluent 60.08%

Glycerol 62.08%
Molasses 60.04%

Proteus mirabilis

Municipal Waste Water 0.00%

[27]
Palm oil mill effluent 0.00%

Glycerol 0.00%
Molasses 0.00%

Ralstonia eutropha
Glucose 0.058 [42]

Sodium gluconate 87.03% [43]

Table 2: Data for carbon sources used by microorganisms for scl-PHA production.

Strain Carbon Source 
Used Polymer Yield References

Aeromonas hydrophila Gluconate 15% [44]

Cupriavidus necator

Crude palm kernel oil  
(5g/L) 77 ± 3%

[22]

Crude palm kernel oil 
(10g/L) 82 ± 2%

Jatropha oil 62 ± 3%
Crude palm oil 69 ± 6%
Palm olein 61 ± 4%
Soybean oil 65 ± 1%
Corn oil 63 ± 2%
Coconut oil 70  ± 3%

Escherichia coli

Xylose 70 ± 1% [30]
Sodium octanoate 47.3 ± 5.0 %

[31]
Decanoic acid 25.7 ± 0.9 %
10-Undecenoic acid 41.0 ± 8.0 %
Dodecanoic acid 28.6 ± 8.0 %

Haloarcula hispanica YE/Glucose 17.33 ± 0.04% [45]
Halobacteriumnoricense Triptone 0.08/0.03% [46] 
Halococcusdombrowskii YE/HyCase 0.15/0.01% [46]
Halococcussalifodinae YE/HyCase 0.05/0.01% [46]

Haloferax mediterranei

Glucose 27% [47]
ECS (Extruded Corn 
Starch) 38.7% [47]

ERB (Extruded Rice 
Bran) :ECS (1:8) 55.6% [47]

Bacto Casa amino 
acids/YE 18.21 ±  1.88% [45]

YE/Starch 24.88 ± 1.27 g/L [45]
Hydrogenophaga 
pseudoflava Whey (copolymer) 10.1 ± 0.9% [13]

Pseudomonas putida

Octanoic acid 49.7 % [48]
Octanoate 21%

[49]

Glucose ND
Acetate ND
Pyruvate ND
Citrate ND
Succinate ND
Glucanoate ND
fructose ND
Dodecanoic acid 54.5 %

[48]
Oleic acid 68.9 %
Xylose 20 % [50]
Nananoic acid 0.15g/g

[51]NanoicAcid:Glucose 
(0.8:1) 50.85%

Corn oil 17.5 ± 1.4% [52]
Glucose 19% [44]
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the cell growth phase, followed by gradually decreasing the flow rate 
to maintain a lower residual concentration of about 2 g/l. This strategy 
came out to be successful with the Dry Cell Weight (DCW) and PHA 
contents as 14.35g/L and 6.89g/L respectively at the end of 42nd hour 
[62]. pH-stat mode provide randomly variable rate of organic acids, 
which worked on the principle of acid adjustment/pH control and is 
successful if the pH of the system varies with the growth of the bacteria. 
The pH variation is adjusted by organic acids rather than HCl/NaOH 
leading to a random feeding of organic acids, which caused random 
feeding leading to less effective PHA production and DCW. In 
reference, a more careful feed rate control can further modulated for 
improvement in cell growth and PHA production.

Continuous: Continuous fermentation technology has got 
advantage of maintaining constant nutrient environment and is 
useful to study the effect of nutrient limitation on the bacterial growth 
and productivity in a quick and real time manner [63]. In fact, the 
documented reports are aimed at studying the effect of limiting the 
concentration of various nutrients. In a recent example, the metabolic 
response of P. putida KT2442 producing high levels of PHA under 
single- and multiple-nutrient-limited growth, with chemostat mode 
has been reported [64]. At the industrial level, continuous mode could 
prove very useful owing to continuous harvesting of the product, 
coupled with the ability to tweak the nutrient concentration as per 
the requirement; although the stringency of sterile environment and a 
check on mutability of the producing strain becomes obligatory under 
continuous mode, when compared to the ease of batch mode.

Two – stage batch culture as the best method for PHB production: 
The two-stage fermentation involves supply of nutrients to the culture 
in two different stages and composition. Thus, becomes handy for 
possessing the nutrient limitation, a prerequisite for PHA production 
[9]. In the first stage, culture is fed with simple carbon sources such 
as glucose or fructose and other essential nutrients to make sure that 
cells grow at high specific growth rate and lead to a higher cell biomass 
yield, whereas in the second stage, supply of essential nutrient such 
as nitrogen is limited as a trigger to initiate the biosynthesis [56]. A 
volumetric PHA productivity of 1.06 g L-1 h-1 was obtained by Two-
stage continuous mode of Pseudomonas oleovorans culture [65]. 

Downstream Processing
All the bacterial species reported to produce polyhydroxyalkanoates, 

accumulate them intracellularly in the form of granules, as carbon 
and energy reserves [44,59]. It is thus apparent, that the downstream 
processing chain of PHAs begins from cell lysis of the biomass 
separated from the medium by centrifugation, so as to expose the cell 
trapped product [66]. There are many techniques used for the purpose, 
Table 5 describes a few of these. 

Recovery
The PHAs are present in the cell debris after the cell lysis and 

centrifugation, which can be recovered with a good efficiency using 
different solvents like cold methanol, chloroform etc [77]. This leaves 
a dull white precipitate behind; further purification of the product is 
done by membrane filtration, which helps in segregating PHAs from 
other small biomolecules still present in the extract. A study with non-
halogenated solvents for recovery from R. eutropha has shown to give 
high purity (upto 99%) and have proved potentiality of ethyl acetate 
and methyl isobutyl ketone to replace halogenated solvent, chloroform, 
with cost reduction benefits [78]. In a research, 0.1 µm ceramic tubular 
membranes have shown high separation efficiency owing to their 
chemical inertness and resistance to pH, temperature and concentration 
changes [77]. But polyethersulfone polymeric flat plate membrane 
modules are becoming the choices of the day because of their 5-10 
times less cost than ceramic membranes and ability to retain even the 
smallest PHA granule. However, membranes like polyethersulfone 
come with an inherent disadvantage of limited life span and need to be 
replaced once in a year or two. It must be noted that the ultra-filtration 
carried out to separate the PHAs is operated in a cross flow regime, 
which avoids the blocking of the membranes and ensures continuous 
operation for long time [77]. The amount of product recovered in form 
of filtrate is then determined using Gas Chromatography to confirm 

Pseudomonas 
oleovorans Corn oil 15.7 ± 2.5 % [52]

Pseudomonas 
chlororaphis Corn oil 39.5 ± 0.8 [52]

Pseudomonas G101 Waste frying rapseed 
oil 20% [53]

Natronobacterium
gregoryi YE/Casamino acids 0.1/0.3% [46]

Sinorhizobiummeliloti Rice bran hydrolysate 48.32% [4]

Table 3: Data for carbon sources used by microorganisms for mcl-PHA production.

Concentration
Amount 

Na2HPO4.12H2O 
(g/l)

Amount 
KH2PO4 (g/l)

PHA concentration 
(%, w/w)

Normal phosphate (35mM) 9 1.5 4.6 ± 0.6
2/3 phosphate (23.35 mM) 6 1 5.5 ± 0.5
1/3 phosphate (11.66 mM) 3 0.5 10.2 ± 0.5

Table 4: Effect of limiting P and N concentrations on PHA production [44].

Classes Techniques Acting Principle Microorganism Reference

Physical/ 
MechanicalDisruption

Thermolysis Disruption of Cell wall by the affect of ionic strength, pH and temperature 
with chelating agent [67,68]

Ultrasonication Ultrasonic waves, followed by centrifugation Bacillus flexus [68]

Bead Mill
Grinding cylinder containing beads made of wear resistant materials like 
glass, alumina, titanium carbide, zirconium oxide and zirconium silicate is 
driven by motor

Alcaligenes latus [60,67,69]

High Pressure 
Homogenizer

Disrupter fitted with a displacement pump monitors the pressure and a 
discharge valve to homogenize the solution pushed through pump Gram Negative Bacteria [70]

Chemical Disruption

Alkali Treatment Exposure to basic pH (mild alkaline hydrolysis) Bacillus flexus [69]

Detergent Solubilization Detergents like SDS, CTAB, Triton X 100, Saponins, Tween 20 and 
Tween 80 etc, are used Ralstonia eutropha [67,71,72]

Cell Wall Permeabilisation Organic solvents like toluene, acetone, chloroform and ethylene 
carbonate are used, followed by non-solvent precipitation

Bacillus cereus SPV and 
Cupriavidus necator, 
respectively.

[73,74]

Enzymatic Disruption Lytic enzymes in medium with detergent or chelating agent Cupriavidus necator [75,76]

Table 5: Cell Lysis techniques and acting principles.
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the percentage of recovery [43]. Quantification can be done by NMR 
[79], Flow Cytometry [80] etc.

Cost
The major factor of concern is the cost of the produced biomaterial 

i.e. PHA. The production cost is contributed by various factors. The 
process parameters are involved in upstream cost whereas the down 
streaming involves the cost of solvents used and the other purification 
strategies. The Table 6 illustrates parameters involved in cost of 
production and degradation through biological means. Processing cost 
in generally 20% of the total cost. 

Conclusion
The growing environmental pollution is becoming a global concern, 

where synthetic plastics contribute to a great extent due to their non-
degradability. The bioplastics can be regarded as a working alternative 
to conquer the conundrum. From all the classes of bioplastics, PHA 
has shown to have analogous properties with biodegradability. Thus, 
PHA can be looked forward as an alternate to synthetic plastics as they 
require natural sources for synthesis like Bacteria, that have come as an 
effective way for commercial production, Ralstonia eutropha is amongst 
the best producers. Being promiscuous in nature, their production 
involves certain process parameters to be optimized both at laboratory 
and industrial scale, where the optimum pH and temperature range 
depends on the microorganism used in the synthesis. Further the 
O2 stress enhances the production. The mode of fermentation is 
responsible for influencing the biomass yield and accumulation of the 
product. Not to overlook the Cost factor, which can be reduced by 
various alternatives to novel carbon sources, but to attain a good yield 
and commercialization with these alternatives still remain a challenge.
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Parameters Synthetic Plastics Biodegradable Plastics

Synthesis

Crude oil Microorganism
Flash distillation Waste carbon sources
Column distillation Culturing
Cracking (use of catalyst) Biomass separation
Polymerization Polymer recovery

Heat required for every step Heat required for film 
preparation  and drying

Degradation
Ethylene, CO2, CH4 production Biological compounds are 

produced
Toxic Non-toxic
Never degrade Take days to months

Table 6: Factors deciding cost.
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