National Survey of Influenza Myocarditis in Japanese Children in Three Seasons

Akira Ukimura1,2*, Kanta Kishi3, Tomoyuki Yamada2, Yuriko Shibata2, Yukimasa Ooi4, Yumiko Kanzaki1 and Hiroshi Tamai3
1Department of General Internal Medicine, Osaka Medical College, Takatsuki, Japan
2Infection Control Team, Osaka Medical College Hospital, Takatsuki, Japan
3Department of Pediatrics, Osaka Medical College, Takatsuki, Japan

Abstract
An influenza pandemic occurred in 2009. A nationwide, retrospective survey of Influenza myocarditis in Japanese children in 3 consecutive Influenza seasons was performed to compare Influenza myocarditis in the 2009/2010 season (the pandemic season), the 2010/2011 season, and the 2011/2012 season, by mailing questionnaires to 514 hospitals in Japan that have pediatric departments and collecting data from 285 hospitals. A questionnaire-based survey related to Influenza myocarditis was also conducted to evaluate the attitudes of Japanese pediatricians concerning the diagnosis of Influenza myocarditis. Fifteen Influenza myocarditis patients were reported, with 8 (H1N1pdm:8, type A:1, type B:1) from the 2009/10 season, 4 (type A:1, type B:3) from the 2010/11 season, and 3 (type B:3) from the 2011/12 season. Only 8 patients with Influenza A virus myocarditis were reported, with 7 patients from the 2009/2010 season, one from the 2010/2011 season, and none in the 2011/2012 season. Mortality was 33.3% (5/15) among the myocarditis patients. Twelve patients (12/15, 80%) were diagnosed with fulminant myocarditis with fatal arrhythmias and/or cardiogenic shock. In the pediatricians' attitude survey, only 3.3% of pediatricians routinely examined the electrocardiograms of children hospitalized with Influenza infection in Japan. The number of Japanese children with myocarditis associated with Influenza A virus seemed to increase in the pandemic season. Increased awareness of Influenza myocarditis in children is needed during future Influenza pandemics.

Keywords: Myocarditis; Influenza; Pandemic; Cardiogenic shock

Introduction
Acute myocarditis is a potentially lethal disease, and the etiological agents of viral myocarditis include Enteroviruses, Adenoviruses, Parvoviruses, Cytomegalovirus, Influenza virus and others [1-10]. Fulminant myocarditis causes severe hemodynamic dysfunction and requires high-dose catecholamine and mechanical circulatory support [1,6-8,11]. An Influenza pandemic occurred in 2009 [6,12-14]. The causative organism, Influenza H1N1pdm, has been reported to cause fatal myocarditis as well as pneumonia [2-4,6-10]. Based on national surveillance in Japan, we previously reported that fifteen fulminant myocarditis patients (adults: 13, children: 2) with Influenza A H1N1pdm were seen in the 2009/2010 season, while only two (adults: 2, children: 0) were seen in the 2010/2011 season, and that electrocardiogram (ECG) was useful for screening for myocarditis [7].

Patients and Methods
A nationwide, retrospective survey of Influenza myocarditis in Japanese children in 3 consecutive Influenza seasons was performed to compare Influenza myocarditis in the 2009/2010 season (the pandemic season), the 2010/2011 season, and the 2011/2012 season by mailing questionnaires to 514 hospitals in Japan that have pediatric departments. A fill-in-the-blanks and multiple-choice questionnaire was designed to obtain information on patient profiles, laboratory findings, treatment, outcomes and other data. Myocarditis was diagnosed using the Guidelines for Diagnosis and Treatment of Myocarditis (ICS 2009). The presence of compatible clinical symptoms, echocardiographic abnormalities in the absence of cardiac ischemia, leakage of cardiac enzymes and/or other evidence of myocardial damage suggested that a diagnosis of myocarditis was highly probable. Laboratory diagnosis of Influenza was made by quick Influenza diagnostic testing or probe-based real-time polymerase chain reaction (RT-PCR) using a nasopharyngeal swab or sputum, or viral titer elevation. A questionnaire-based survey related to Influenza myocarditis was performed to evaluate the attitudes of Japanese pediatricians concerning the diagnosis of Influenza myocarditis. The study protocol was approved by the Institutional Review Board of Osaka Medical College.

Results
Completed questionnaires were received from 285 hospitals that have pediatric departments in Japan. About 300,000 children were admitted per year in these hospitals. Fifteen Influenza myocarditis patients were reported, with 8 (H1N1pdm:8, type A:1, type B:1) from the 2009/2010 season, 4 (type A:1, type B:3) from the 2010/2011 season, and 3 (type B:3) from the 2011/2012 season (Table 1). Only 8 patients with Influenza A virus myocarditis were reported, with 7 patients from the 2009/2010 season, one from the 2010/2011 season, and none in the 2011/2012 season. Mortality was 33.3% (5/15) among the myocarditis patients. Twelve patients (12/15, 80%) were diagnosed with fulminant myocarditis with fatal arrhythmias and/or cardiogenic shock. Myocardial circulatory support was emergently inserted in 4 patients, three of whom were rescued. Three of the 9 patients treated without myocardial circulatory support survived. Respirators were used in 9 patients. Myocardial biopsies were not performed, and autopsy showed myocarditis in two patients.

*Corresponding author: Akira Ukimura, Department of General Internal Medicine, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki 569-8686, Japan, Tel: +81-72-683-1221; Fax: +81-72-684-7386; E-mail: in3011@poh.osaka-med.ac.jp
Received February 21, 2014; Accepted April 15, 2014; Published April 20, 2014

Copyright: © 2014 Ukimura A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Table 1: Characteristics of pediatric myocarditis patients associated with influenza virus in 3 consecutive seasons in Japan

Season/Year	Age Sex	Baseline Disease	Type of myocarditis	Pneumonia or Encephalopathy	RT-PCR or rapid diagnostic testing	ECG findings	Echocardiographic findings	Peak of Cardiac Enzyme	Medical treatment	Ventilator	Mechanical Support	Bypass or Autopsy	Outcome	
2009-2010/1	5/M	none	fulminant myocarditis	no information	2009A (H1N1)	no information	no information	no information	oseltamivir	used	not used	not done	Death	
2009-2010/2	6/M	asthma	fulminant myocarditis	pneumonia	2009A (H1N1)	V, T inversion	diffuse hypokinesia EF3%	CPK 25,224	oseltamivir	used	PCPS	not done	Improved	
2011-2012/3	9/F	none	fulminant myocarditis	low voltage ST elevation	2009A (H1N1)	low voltage T I	diffuse hypokinesia	CK-MB918	oseltamivir	used	PCPS IABP	not done	Improved	
2012-2013/4	12/M	brain tumor	consciousness disturban/	day 1	2009A (H1N1)	no information	no information	no information	not used	not used	not used	Death		
2010-2011/5	15/M	none	chest pain/day/2	acute myocarditis	none	elevation of HI titer (Influenza A)	ST elevation pericardial effusion	CPK 304 (intra-aortic balloon pumping)	not used	not used	not used	Improved		
2012-2013/5	7/M	none	chest pain/day/2	acute myocarditis	none	sinus tachycardia low voltage	hypokinesia with pericardial effusion	CPK 5,163 (CK-MB 128)	used	not used	not used	Improved		
2010-2011/7	14/F	dyspnea day 7	fulminant myocarditis	none	2009A (H1N1)	T inversion	no information	no information	conservative therapy	not used	not used	not done	Improved	
2010-2011/8	8/F	epilepsy	dyspnea, chest pain/4	acute myocarditis	none	B positive by rapid test	T inversion	hypokinesia with pericardial effusion	CPK 1933 (CK-MB 33)	g-globulin	not used	not used	Improved	
2011-2012/1	1/F	shock/ day 6	fulminant myocarditis	none	A positive by rapid test	ST elevation	diffuse hypokinesia EF20%	CPK 21,818	oseltamivir	used	not used	not done	Improved	
2010-2011/2	7/F	consciousness/ disturbance / day 6	fulminant myocarditis	none	B positive by rapid test	low voltage ST elevation	diffuse hypokinesia pericardial effusion	CPK 7,591 (CK-MB 175)	oseltamivir g-globulin	not used	not used	not done	Improved	
2010-2011/3	5/F	asthma	abdominal pain/ day 3	fulminant myocarditis	none	B positive by rapid test	no information	CPK elevation	zanamivir	not used	not used	not done	Death	
2010-2011/4	11/F	dyspnea/ day 5	fulminant myocarditis	none	B positive by rapid test	ST elevation	diffuse hypokinesia	CPK 37,979 (CK-MB 583)	peramivir	g-globulin	used	PCPS	not done	Improved
2011-2012/1	8/F	dyspnea/ day 5	fulminant myocarditis	none	B positive by rapid test	low voltage ST elevation	diffuse hypokinesia	CPK elevation	peramivir	g-globulin	not used	not used	not done	Improved
2011-2012/2	6/M	T/F s/p OP	shock/day 3	fulminant myocarditis	none	B positive by rapid test	T inversion	diffuse hypokinesia	CPK 736	oseltamivir	used	PCPS	not done	Death
2011-2012/3	10/F	dyspnea day 2	acute myocarditis	none	B positive by rapid test	ST elevation	pericardial effusion edema of LV wall	CPK 13,029 (CK-MB 277)	peramivir	g-globulin	not used	not used	not done	Improved

Table 1: Characteristics of pediatric myocarditis patients with influenza virus in 3 consecutive seasons in Japan

Figure 1: Attitudes of Japanese pediatricians to the diagnosis of influenza myocarditis

- **Q.1 When do you assume influenza myocarditis in your pediatric influenza patient?**
 - Always: 7.6%, When: 8.7%, Somatic illness: 13.3%, Never: 70.9%

- **Q.2 Do you examine routinely when your pediatric influenza patient is admitted to your hospital?**
 - Blood: 97.3%, Chest: 60.8%, Culture: 3.3%, ECG: 0.7%, UCG: 0.7%

Ten patients had no baseline disease, and only two patients suffered from bronchial asthma. Three patients with myocarditis also developed pneumonia. RT-PCR or quick diagnostic testing yielded positive results in all patients. Most patients showed ECG abnormalities, such as ST segment elevation and/or T wave abnormality (ST-T abnormalities). Echocardiography revealed abnormalities of left ventricular wall motion in 10 patients. Cardiac dysfunction recovered almost completely in 9 patients, but partially remained in one patient. Eleven patients (73%) were treated with neuraminidase inhibitors.

Answers to the attitude survey concerning the diagnosis of Influenza myocarditis were received from 451 pediatricians (Figure 1). Overall, 8.4% of Japanese pediatricians always assumed the presence of Influenza myocarditis in pediatric Influenza patients, 13.2% in hospitalized patients, and 71.3% in patients with serious illness; however, 7.1% of Japanese pediatricians never assumed that Influenza myocarditis was present in pediatric Influenza patients. In addition, 87.6% of Japanese pediatricians routinely examined the chest X-rays when their pediatric patients were admitted to hospital, and 3.3% of pediatricians routinely examined the ECG, which is useful for screening of myocarditis (Figure 1).

Discussion

The Ministry of Health, Labor and Welfare of Japan confirmed only 198 deaths among about 20.61 million patients infected with Influenza A H1N1pdm in the 2009/2010 season, and 150 deaths among about 10.3 million patients in the 2010/2011 season in Japan [14]. The low case-fatality rate in Japan may be a result of early diagnosis and aggressive early intervention with antiviral drugs [15,16]. Twenty-five Influenza H1N1pdm myocarditis patients were reported in the 2009/2010 season, although only 4 were documented in the 2010/2011 season, and only 4
pediatric myocarditis patients were reported in 2 seasons in our previous study [7]. Since the number of pediatric myocarditis patients seemed to be smaller than in adult patients, this study was performed. Only 8 myocarditis patients with Influenza A virus were reported, with 7 from the 2009/2010 season, only one from the 2010/2011 season, and none in the 2011/2012 season in this study. The number of Japanese children with myocarditis associated with Influenza A virus seemed to increase in the pandemic season. A high prevalence of fulminant myocarditis was observed among the pediatric patients with myocarditis (12/15, 80%). Since cardiac symptoms developed on the first to third day of sickness in most pediatric myocarditis patients, and cardiac dysfunction progressed rapidly, early diagnosis and prompt treatment of acute myocarditis with heart failure are required in patients with Influenza infection during the pandemic season [6-10]. Appropriate intervention in patients with fulminant Influenza myocarditis consists of treatment with neuraminidase inhibitors to eliminate the causative virus, and mechanical circulatory support with intra-aortic balloon pumping or percutaneous cardiopulmonary support is very helpful for treating the depressed myocardial function [1,6-11,15,16].

Myocarditis was proven by autopsy in only 2 fulminant myocarditis patients in this study, and the pathological findings were relatively mild. Many kinds of viruses have been implicated as a cause of myocarditis, with different viruses having different potentials to cause myocarditis [1-8]. The affinity of the Influenza virus for cardiac myocytes seemed to be low in previous studies [1-3,17,18]. The pathological mechanism of Influenza myocarditis appears to differ depending on the pathogen, and it may depend on host immunity. These results suggest that vaccination is able to suppress myocarditis associated with seasonal Influenza A virus in Japan.

The questions about the attitudes of Japanese pediatricians to the diagnosis of Influenza myocarditis showed that most of them did not usually assume that their patients had Influenza myocarditis. The ECG was found to be a sensitive and convenient tool for diagnosis of myocarditis in our previous study. ST elevation, T inversion, and conduction block are frequently observed. However, only 3.3% of Japanese pediatricians ordered routine ECGs on admission for Influenza. Thus, mild cases of myocarditis in children may be missed by pediatricians.

Conclusion

Increased awareness of Influenza myocarditis in children is very important during future Influenza pandemics.

Acknowledgement

This study was supported in part by a research grant for intractable diseases from the Ministry of Education, Science and Culture, Tokyo, Japan. The authors greatly appreciate the excellent assistance of Ms. T. Takabayashi.

References