MRI Assessment of Associations between Brown Adipose Tissue and Cachexia in Murine Pancreatic Ductal Adenocarcinoma

Yaqi Zhang*, Su Hu1,2, Junjie Shangguan1, Liang Pan1,3, Xin Zhou4, Vahid Yaghmai1,5, Yuri Velichko1,5, Chunhong Hu2, Jia Yang1 and Zhuoli Zhang1,5*

1Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
2Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
3Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
4Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital, Tianjin 300222, China
5Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA

*The authors contributed equally to this work

Corresponding author: Chunhong Hu, Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu-215006, China, Tel No: +86-5126778-0633; E-mail: hch5305@163.com

Jia Yang, Department of Radiology, Northwestern University, 737 N Michigan Ave, 16th Floor, Chicago, IL-60611, USA, Tel No: +1-312-503-0689; E-mail: jia.yang@northwestern.edu

Zhouli Zhang, Department of Radiology, Northwestern University, 737 N Michigan Ave, 16th Floor, Chicago, IL-60611, USA, Tel No: +1-312-695-5753; E-mail: zhuoli-zhang@northwestern.edu

Received date: January 17, 2019; Accepted date: February 01, 2019; Published date: February 08, 2019

Copyright: ©2019 Zhang Y, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Objective: As the major thermogenic tissue in body, the brown adipose tissue (BAT) was recently identified as an important factor to induce the rapid weight loss and malnutrition in malignancy. Current methods for detecting and quantifying brown adipose tissue (BAT) are in limited use. The aim of this study was to evaluate the changes of BAT tissue and its function in the development of pancreatic ductal adenocarcinoma (PDAC) by using magnetic resonance imaging (MRI).

Methods: Ten-week-old female C57BL/6 mice were inoculated orthotopically with Pan02 tumor cells. R2* maps and two-point Dixon MRI were performed weekly for evaluation of BAT function and volume, respectively. The T2-weighted MRI was applied weekly for monitoring tumor growth. Meanwhile, the body weight was measured daily as another indication of malnutrition. The UCP1 levels in BAT and white adipose tissue (WAT) were assessed. The serum IL-6 was also measured as the biomarker of cancer-associated cachexia.

Results: T2-weighted MRI indicated the rapid tumor growth from week 3 to week 5 after tumor cell inoculation. The water-fat separated MRI could clearly identify and quantify the BAT. The function and volume of BAT could be monitored by weekly MRI measurement in tumor-bearing mice. The total body weights of PDAC tumor-bearing mice were relatively stable, however, was significantly lower than that of control C57BL/6 mice.

Conclusion: The results of this study demonstrated the feasibility of detection and quantification of BAT in vivo by MRI during the development of pancreatic cancer.

Keywords: Pancreatic cancer; Brown adipose tissue; Cachexia; MR imaging

Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the most highly associated with wasting of peripheral tissues, metabolic syndrome that impairs quality of life, limits cancer therapy, leading to decreased survival rate [1]. It is reported that complex cancer-associated factors contribute to the metabolic dysfunction in PDAC patients, including circulating inflammation factors, anatomic factors (extrinsic compression from the tumor causing gastric outlet obstruction), and/or the adverse effects of chemotherapy [2]. Adipose wasting may also be caused by altered exocrine pancreatic function [3]. Although many studies have tried to reverse the symptom of cancer-associated cachexia, a complete reversal of wasting by using nutrition support or anti-cytokine treatment has not been achieved [2,4].

Brown adipose tissue (BAT) is adipose tissue that contains a high number of mitochondria within cells, making it an important thermogenic tissue for both basal and inducible energy expenditure. Primarily being found in human infants and young children, the presence of physiologically significant BAT was identified in normal adult human only less than a decade ago [5]. Besides its important role in obesity, BAT has been identified as a critical factor in metabolic dysfunction and cachexia in cancer patients due to its role in energy expenditure [1,6]. Therefore, tracking the changes of BAT is a promising biomarker for predicting the progression of PDAC and evaluating tumor response to therapy. However, the changes of BAT function and volume were not well-characterized because of limitations of non-invasive imaging methods for BAT.
Currently, 18F-FDG positron emission tomography-computed tomography (PET/CT) is the most commonly used platform for BAT imaging. However, some limitations still exist in the application of 18F-FDG PET/CT. Firstly, the results of 18F-FDG-PET/CT are influenced by the injection amount and activity of radioactive tracers; Secondly, there is still no widely acceptable, optimized, and validated approach for data analysis and reporting. Although a guideline currently exists for BAT evaluation in FDG-PET/CT experiments, factors such as temperature and insulin level are difficult to normalize [7]. Besides, the high cost of 18F-FDG-PET/CT scans limits its utility in clinical work. On the other hand, magnetic resonance imaging (MRI) is a promising non-invasive technique with the advantages in lacking ionization radiation, stability, versatility and lower-cost in identification and quantification of BAT [8,9]. Several MRI methods have been reported for analysis of BAT [9-11]. Compared with WAT, BAT is capillary-rich and multi-locular, indicating a higher ratio of water to fat. Therefore, the method of water-fat separated MRI, which is able to detect the fat fraction (FF) among different tissues, is an ideal method for identification of BAT. Additionally, Blood-oxygen-level-dependent MRI (BOLD-MRI) can also be applied for BAT characterization because of the higher capillary content in BAT [8,10]. Due to the high mitochondrial density in BAT, BOLD-MRI could reflect the function of BAT, showing changes in the transverse signal decay rate (R2*). In infants and adolescents, R2* of supracavicular BAT ranges from 39 to 84 s⁻¹, and subcutaneous WAT ranges from 22 to 40 s⁻¹, indicating R2* could be used as an indicator to evaluate the function of BAT [11,12]. Besides of the potential in measuring BAT, MRI is a well-established technique to detect and characterize neoplasia in patients, including early diagnosis and evaluation of treatment response [13]. Previously, the usefulness of T2-weighted imaging in detecting the growth of tumors has already been widely recognized [14].

In this study, the volume and function of BAT were evaluated in murine model of PDAC and compared with tumor development by MRI.

Methods

Cell culture

Pan02 cell line is derived from 3-amethylcholanthrene induced PDAC in C57BL/6 mice. Pan02 cells were cultured in RPMI 1640 medium (Life Technologies, Carlsbad, CA) supplemented with 10% fetal bovine serum (FBS, Sigma-Aldrich) and penicillin and streptomycin (100 IU/ml, Sigma-Aldrich). The cells were maintained in a humidified atmosphere of 5% CO₂ at 37°C. Before tumor cell inoculation, cell viability was assessed using trypan blue staining (cell viability >90% was confirmed).

Animals

C57BL/6 female mice (10 weeks of age, weighting between 18 and 22 gm; Charles River, Wilmington, MA) were used in the study for establishing orthotopic pancreatic cancer models. Briefly, mice were anesthetized with 2% isoflurane in oxygen at a rate of 1 l/min. 1 x 10⁵ viable Pan02 cells were gently mixed with ice-cold Matrigel (Corning, NY, USA) at a ratio of 3:1 to produce a homogeneous suspension. Then the abdominal cavity was opened by a 1.5 cm longitudinal incision after local shaving and disinfection. 5 μL of Pan02 cell-matrigel mixture suspension was slowly injected into the tail of pancreas. The pancreas was placed back into the abdominal cavity, and the abdominal cavity was closed by a running two-layer silk suture.

Postoperative status and wound healing were monitored every day for one week. After one week, a visible nodule at the location of pancreatic tail was detected by magnetic resonance imaging in all mice (protocols described below), which indicated that the orthotopic pancreatic cancer models were established successfully. Body weight was measured and recorded daily. The mice were sacrificed on week 3, 4 and 5 respectively after Pan02 cell implantation. Our animal study was approved by the Institutional Animal Care and Use Committee (IACUC) of Northwestern University.

Magnetic resonance imaging examination

MRI examinations were performed by using a 7.0 T small-animal MRI scanner (Clinscan, Bruker BioSpin, Ettlingen, Germany) with a commercial mouse coil (Clinscan, Bruker). One week after Pan02 cell implantation, tumors were detected on MRI in all the mice to confirm the successful establishment of orthotopic pancreatic cancer models. Mice were anesthetized by inhalation of a mixture of 2% isoflurane and oxygen at 1 l/min.

Firstly, tumor growth was monitored weekly. The MRI sequences and parameters were as follows:

(a) Axial T1-weighted imaging (T1WI): repetition time (TR)/echo time (TE)=630/20 ms; field of view (FOV)=27 mm × 30 mm; matrix size=122 × 192; slice thickness (ST)=0.7 mm; FA=90°;

(b) Axial T2-weighted imaging (T2WI): TR/TE=1581/40 ms; FOV=21 mm × 30 mm; matrix size=180 × 256; ST=0.8 mm; FA=180°;

(c) Coronal T2WI: TR/TE=2500/40 ms; FOV=26 mm × 30 mm; matrix size=142 × 192; ST=0.5 mm; FA=180°;

(d) Sagittal T2WI: TR/TE=2500/40 ms; FOV=24 mm × 30 mm; matrix size=154 × 192; ST=0.5 mm; FA=180°.

Then, MRI images of BAT were also performed weekly. Localization was performed using a T2-weighted sequence and was followed by shimming over the interscapular BAT. The MRI sequences for BAT were as follows:

(a) Sagittal T1-weighted imaging (T1WI; TR/TE=380/10 ms, voxel dimensions=0.156 × 0.156 × 0.6 mm³);

(b) Sagittal T2-weighted imaging (TR/TE=3000/66 ms, voxel dimensions=0.156 × 0.156 × 0.6 mm³);

(c) Sagittal Dixon imaging (TR=12 ms, TE=2/3.5 ms, voxel dimensions=0.09 × 0.09 × 0.6 mm³);

(d) Sagittal BOLD imaging (TR=30 ms; 4 echo times, TE 2.0 to 11.69 ms with 3.23 ms echo spacing; voxel dimensions=0.168 × 0.168 × 0.6 mm³).

Tumor size measurement was performed using ITK-SNAP (version 3.6.0, University of Pennsylvania) software, free-hand regions of interest (ROIs) were traced along the tumor margin on each slice of axial T2-weighted images containing an orthotopic tumor, and then the three-dimensional volume was calculated. R2* maps were created using a custom script in Matlab (The MathWorks, Natick, MA, USA) based on BOLD images, and the R2* values of BAT were analyzed.

H&E staining and immunohistochemistry

Pancreatic tumor, brown and white adipose tissue were collected separately, fixed by 10% formaldehyde and followed with 4 μm-section in thickness and stained with H&E staining. BAT and WAT sections
from the same sample were processed with immunohistochemistry. Briefly, the antigen retrieval was performed in a water bath using citrate sodium buffer. After blocking for 1 h at room temperature in blocking buffer (5% goat serum, 2.5% BSA in 1 x PBS), sections were incubated with diluted anti-UCP1 antibody (Abcam, Cambridge, MA) overnight at 4°C. Then the sections were washed 3 times for 10 minutes with PBS and then incubated for 1 hour at room temperature with HRP-conjugated secondary antibody. Finally, immunostaining was detected with DAB and the slides were observed by digital camera.

Quantitative qRT-PCR

BAT RNA was extracted and purified with RNeasy Lipid Tissue Mini kits (Qiagen Inc, Netherlands) and then reverse transcribed into cDNA with a SuperScript IV VILO Master Mix (Invitrogen, Waltham, MA). qRT-PCR was performed using TaqMan Fast Advanced Master Mix (Thermo Fisher, Waltham, MA) and primer probes (Thermo Fisher, Waltham, MA). Thermogenic genes in BAT, uncoupling protein 1 (UCP1) and peroxisome proliferator-activated receptor γ (PPAR-γ) were compared between tumor-bearing mice and tumor naïve controls by qRT-PCR and normalized to tissue appropriate control genes (GAPDH).

Enzyme-linked immunosorbent assay (ELISA)

The expression of IL-6 was detected by ELISA. The serum of tumor-bearing mice and tumor naïve mice were collected and determined by mouse IL-6 kit (R&D bioscience, Minneapolis, MN) according to the manufacturer's protocols. The absorbance was measured at 450 nm with a micro plate reader.

Statistics

For comparison between Pan02 tumor-bearing group and control group, data were assessed by Student’s t-test or analysis of variance (Prism 7.0, GraphPad Software, San Diego, CA). p<0.05 was used to assess statistical significance.

Results

Monitoring PDAC tumor development

Representative axial T2-weighted images of the pancreatic tumors at different time points after Pan02 cell implantation (Figure 1A). The average volumes of tumor from week 1 to week 5 were 11.01 ± 2.53, 23.8 ± 8.69, 53.21 ± 21.44, 140.20 ± 49.93 and 291.29 ± 63.03 mm³ respectively (Figure 1B). Histological examination showed that implanted tumor with pancreas duct-looking morphology and ragged infiltration compared with the adjacent pancreatic tissue, which confirmed the PDAC characteristics of our tumor model (Figure 1C).

Body weight

Although the total body weight after Pan02 tumor inoculation remained stable, the tumor-bearing mice gained less weight compared with the C57BL/6 mice (Data from Jackson Lab) (Figure 2) [15].

BAT function evaluation by MRI

In this study, the mice were scanned weekly for evaluating the changes in interscapular BAT after tumor cell orthotopic inoculation. The fat fraction image was calculated based on the result of Dixon MRI, and the ROIs (regions of interest) were selected based on the FF distribution in mice cervical region. As shown in Figure 3A, the BAT region could be clearly identified, as it is distinct from surrounding tissues, such as VAT and skeletal muscle. The volume of BAT was quantified by measuring the volume of ROIs while referring to the anatomical position based on T1 and T2 images. The volume of BAT was relatively stable in first 4 weeks, a significant decrease from 28.40 ± 0.73 to 23.71 ± 1.60 mm³ at week 5 (p=0.047, n 6-8 per group) (Figure 3B).

Figure 1: Monitoring tumor development after Pan02 cell implantation; (A) Representative T2-weighted MRI for pancreatic tumor on 1, 3 and 4 weeks after Pan02 cell implantation; (B) Quantitative result of tumor volume changes after Pan02 cell inoculation. Results were expressed as mean ± SEM; (C) H&E staining of PDAC tumor (upper panel) and adjacent non-tumor tissue (lower panel). Scale bar=200 μm.

Figure 2: Body weight changes in tumor progression. Body weight changes compared with C57BL/6J WT mice. Results were expressed as mean ± SD.

In order to detect the function of BAT after in PDAC model by MRI, the R2* values in BAT were measured based on BOLD sequences. As
shown in Figure 3C, the average level of R2* shows no change with the increase in tumor size (Figure 3C).

Figure 3: Changes of BAT during tumor growth; (A) Representative Dixon MRI (fat only) for BAT on 1-4 weeks after Pan02 cell inoculation. BAT areas are labeled with red dash line; (B) Changes in brown adipose volume based on ROI that determined by FF (* indicates to p<0.05); (C) R2* values in PDAC mice on week 1 to week 5 after Pan02 cell inoculation. Results were expressed as mean ± SEM.

Figure 4: BAT mRNA expression and serum IL-6 concentration measurement; (A) qPCR analysis of UCP1 and PPAR-γ expression in BAT at 5 weeks after Pan02 cell inoculation and compared with age-matched control mice; (B,C) IL-6 levels in serum after Pan02 cell inoculation (* indicates to p<0.05). Results were expressed as mean ± SEM.

Figure 5: Histologic analysis of adipose tissue; (A) H&E staining and UCP1 protein in BAT on week 4 after Pan02 cell inoculation in tumor-bearing mice and age-matched control mice; (B) H&E staining and UCP1 protein expression in WAT on week 4 after Pan02 cell implantation in tumor-bearing mice and age-matched control mice. Scale bar=100 μm.

Discussion

In this study we demonstrated the feasibility of utilizing Dixon-MRI for detection BAT tissue and evaluated the possibility to monitor the BAT thermogenic activity by BOLD-MRI in mouse PDAC model during tumor progression. The volume of BAT monitored by MRI was moderately decreased with the rapid tumor growth, while BOLD-MRI showed no changes of BAT at oxygen in the early phase of tumor. The tumor-bearing mice gained less weight in the development of tumor.
Cachexia is highly associated with cancers of the pancreas, esophagus, stomach, lung, liver and bowel [17]. In particular, PDAC presents a high penetrance of wasting, a process that seems to occur in earlier stages of tumor transformation [18]. The balances of nutrition and energy in PDAC patients are of great importance to their tolerance of treatment and overall survival. Although PDAC is one of the cancers most closely associated with cachexia, there are still limited experimental models available to quantify these changes. To this aim, we took advantage of Pan02 cells, a stable cell line derived from 3-amethylcholanthrene-induced PDAC in C57BL/6 mice [19]. While Greco and coworkers modeled cachexia by intraperitoneal injections of up to 10 million cells per mouse, thus exhibiting progressive weight loss within 2 weeks and subsequent animal death within 45 days [20]. We orthotopically inoculated only 1 × 106 cells (the minimal amount necessary to consistently promote tumor growth) in order to promote a slower tumor growth in pancreas, thus recapitulating the cachexia features specifically associated with PDAC at early phases. This reduced cell number resulted in 50.13 ± 20.74 mm3 tumors at 3 weeks after injection (the time point where mice from Greco et al. already started to die). Pan02 tumor-bearing mice exhibited moderate weight loss within 1 week after tumor challenge, which may be due to operative itself. In the next 4 weeks, the total body weight after Pan02 tumor inoculation remain stable, but the tumor-bearing mice gained less weight compare with the C57BL/6 mice.

In summary, we demonstrated the feasibility of detection and quantification of BAT in vivo by MRI during the development of pancreatic cancer.

Acknowledgements

We thank Matteo Figini for assistance with the MR imaging studies.

Conflict of Interest

None

Funding

This work was supported by the National Institutes of Health, National Cancer Institute grants R01CA196967 and R01CA209886; and the development program of Tianjin Municipal Science and Technology Commission (17YFZCSY00870).

References

15. The Jackson Laborator (2018), Body weight information for C57BL/6J (000664). Jax Home.

Volume 9 • Issue 1 • 1000301

Intern Med, an open access journal
ISSN:2165-8048

