Moringa oleifera: Could this be an Answer to our Need for an Alternative to Fighting Drug-Resistance and Chronic Infections?

Leonard L. Williams*

Center for Excellence in Post Harvest Technologies, The North Carolina Research Campus, USA

Each year, the Center for Disease Control and Prevention (CDC) spend a substantial amount of time and resources to help fight the war on antibiotic resistance. This agency has focused a lot of its attention on education and reducing the use and unnecessary prescribing of these drugs. Over the past 25 years, the development of new antimicrobial drugs is dwindling, while the development of resistance to human or food animal therapeutic agents continue to double [1]. The use of sub-therapeutic levels of antibiotics in animal feed in recent years has raised concern about the development of resistant pathogens in animals and their transfer through food to humans, and placed pressure on meat producers to eliminate the use of antibiotics in food animals. As such, there is increased interest in identifying substances that can reduce the use of in-feed sub-therapeutic antibiotics. Nutraceuticals, or natural supplement that promotes animals’ defense against infection and disease can serve as a suitable substitute for the antibiotics.

A huge body of work has been performed on a medicinal plant called Moringa oleifera. This plant has shown to be promising in helping combat multiple drug resistant bacteria, chronic and acute infections lowering cholesterol, among others. Moringa oleifera Lam. (drumstick tree, horse-radish tree), a member of the family Moringaceae, is a small-medium sized tree, 10-15 m high, widely cultivated in East and Southeast Asia, Polynesia and the West Indies. It is an angiosperm plant; its various parts have been utilized throughout history as food and medicine [2]. A wide variety of medicinal and nutritional virtues have been attributed to its roots, bark, leaves, flowers, fruits, and seeds [3,4].

Fuglie [5] reported the many uses for Moringa like: alley cropping, animal forage, biogas, domestic cleaning agent, fertilizer, foliar nutrient, green manure, gum, honey- and sugar cane juice-clarifier, honey, medicine, biopesticide, pulp, rope, tannin for tanning hides and water purification. Moringa oleifera is considered as an important food commodity in certain parts of the globe, which has had enormous attention as the ‘natural nutrition of the tropics’. The leaves, fruit, flowers and immature pods of this tree are used as a highly nutritious vegetable in many countries [6-8]. Plant leaves have been reported to be a rich source of β-carotene, protein, vitamin C, calcium and potassium, which act as a good source of natural antioxidants. The leaves are highly nutritious, being a good source of protein, β-carotene, vitamins A, B, C and E, riboflavin, nicotinic acid, folic acid, pyridoxine, amino acids, minerals and various phenolics compounds [8]. Moringa is a truly rare plant it has the potential to provide nutrition, medicine, oil (body and cooking), and be a purification agent. The whole plant is also edible from the leaves to the roots [9,10]. The Moringa plant is used to combat malnutrition. Moringa’s leaves, flowers, young pods, are eaten as vegetables. The pods contain all twenty essential acids, vitamins, and other minerals [10]. The leaves have been shown to be good source vitamins A (more beta-carotene than carrots), vitamin C (seven times the amount in oranges) as well as vitamin B and other minerals. In addition the Moringa- leaves have three times the amount of potassium provided by bananas, four times the calcium and two times the amount of protein found in milk, and three times the amount of iron provided by almonds (www.moringasource.com) [10]. It is also used to enhance the shelf-life of fat containing foods due to the presence of various types of antioxidant compounds such as ascorbic acid, flavonoids, phenolics and carotenoids [11,12]. The most interesting fact is, this plant consider as a ‘mother’s best friend’ in country like Philippine because of its utilization to increase woman’s milk production [12,13].

Plant and its products are rich sources of a phytochemicals and have been found to possess a variety of biological activities including antioxidant potential [8,14]. M. oleifera contains various phytochemicals, such as carotenoids, vitamins, minerals, amino acids, sterols, glycosides, alkaloids, flavonoids and phenolics [3,12,15]. The antioxidants could attenuate oxidative damage of a tissue indirectly (enhancing natural defenses of cell) or by indirectly (by scavenging the free radical species) and delay the onset or slow the progression of various chronic diseases. Leaves of this plant are known to have various biological activities, including hypocholesterolemic agent [16], regulation of thyroid hormone status [17], anti-diabetic agent [18], gastric ulcers [19], anti-tumor agent [20] and hypotensive agent [21]. Many reports showed that leaves, flowers, roots, gums, fruits and seeds are extensively used for treating inflammation [22], cardiovascular action [23], liver disease [24] and hematological, hepatic and renal function [25]. In many regions of Africa, it is widely consumed for self-medication by patients affected by diabetes, hypertension, or HIV/ AIDS [26-28].

Chumark et al. [29] reported that feeding water extract of Moringa oleifera leaves significantly reduced the formation of atherosclerotic plaque in internal carotid arteries, along with levels of cholesterol and triglycerides in Male New Zealand white rabbits fed with high cholesterol diet. Moringa fruit also has been found to lower the serum cholesterol, phospholipids, triglycerides, low density lipoprotein, very low density lipoprotein cholesterol to phospholipid ratio, atherogenic index lipid and reduced the lipid profile of liver, heart and aorta in hypercholesteremic rabbits and increased the excretion of fecal cholesterol [30]. Jaiswal et al. [31] demonstrated that aqueous extract of M. oleifera leaves reduces the blood glucose level in normal rats and normalizes the high blood glucose levels in sub, mild and severely diabetic rats. It also improves glucose tolerance in normal, sub and mild diabetic male albino Wistar rats than Glipizide (it is a reference drug in diabetic research for positive control). Kumar et al. [4] examined the hypoglycemic effect of M. oleifera leaf dietary consumption over a 40-

*Corresponding author: Leonard L. Williams, Professor, Center for Excellence in Post Harvest Technologies, The North Carolina Research Campus, USA, Tel: +1-704-250-5700 ext. 5703; Fax: +1-704-250-5709, E-mail: llw@ag.ncat.edu

Received November 29, 2012; Accepted December 02, 2012; Published December 09, 2012

Citation: Williams LL (2013) Moringa oleifera: Could this be an Answer to our Need for an Alternative to Fighting Drug-Resistance and Chronic Infections? Med Aromat Plants 2: e142. doi:10.4172/2167-0412.1000e142

Copyright: © 2012 Williams LL, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
day period in T2DM patient, 30-60 years of age of men, not on anti-
hyperglycemic medication. The experimental groups received a daily
dose of 8 g M. oleifera leaf powder. FPG and PPPG at the end of the
protocol were compared to base line levels and found that they were
significantly reduced in the experimental group (FPG: −28%, P<0.01,
PPPG: −26%, P<0.05). Bharali et al. [32] reported that ingestion of M.
oleifera extracts significantly reduce the skin papillomas in mouse
model. Among the isothiocyanates, naturally occurring in leave
4-[(4’-O-acetyl-α-L-rhamnosyloxy) benzyl] [2], significantly inhibited
tumor-promoter induced Epstein–Barr virus activation, suggesting
that the isothiocyanate group is a critical structural factor for activity [20].

Prabhu et al. [33] demonstrated that Larvicidal activity of M. oleifera
plant seed extract exhibited in the first to fourth instar larvae of the Anopheles stephensi. Doughari et al. [34] demonstrated that the
antibacterial activity of the ethanol extracts of the Moringa showed 8
mm zone of inhibition at 10 mg/ml against Salmonella typhi. Mehta
et al. [30] reported that the juice from the stem bark of Moringa
showed antibacterial effect against Staphylococcus aureus. Nikkon et
al. [35] reported that the aglycone of deoxy-niazimicine (N-benzyl, S-ethyl thioformate) isolated from the chloroform fraction of an
etheral extract of Moringa root bark showed the antibacterial and
antifungal activities. Saadabi and Abu Zaid [36] reported that
aqueous extract of Moringa was inhibitory against pathogenic bacteria,
including Staphylococcus aureus Bacillus subtilis, Escherichia coli, and
Pseudomonas aeruginosa in dose dependent manner. Phytochemicals
have been of enormous interest as a source of natural antioxidants used
for health benefits, food preservation, food flavoring and cosmetics, as
they are safer than synthetics. Currently there has been an increased
interest worldwide to identify antioxidant compounds from plant
sources like Moringa oleifera which are pharmacologically potent and
have small or no side effects for use in protective medicine in human/
animal health and the food industry.

Currently, Moringa oleifera has been shown that it could potentially
serve as a natural alternative to many medical conditions associated
with chronic infections, antimicrobial resistance and other public
health related issues. I think it would be prudent from both the food
and pharmaceutical industry to continue to explore ways to discover
novel bioactive compounds and continue to forge a relationship with
our government regulatory agencies to help expedite the development
of new drugs.

References
The epidemic of antibiotic-resistant infections: a call to action for the medical
community from the Infectious Diseases Society of America. Clin Infect Dis
46: 155-164.
Tropics. Church World Service, Dakar. 68 pp.; revised in 2001 and published as
The Miracle Tree: The Multiple Attributes of Moringa.
6. D’Souza J, Kulkarni AR (1990) Comparative studies on nutritive values of
tender foliage of seedlings and mature plants of Moringa oleifera (Lam.).
seed oil grown in temperate regions of Pakistan. J Agric Food Chem 51: 6558-
6563.
(2010) Active principle from Moringa oleifera Lam leaves effective against two
4374.
The herbal gold to combat malnutrition. Chronicles of Young Scientists 2: 119-
125.
extracts of total phenolic constituents from three different agroclimatic origins
of drumstick tree (Moringa oleifera Lam.) leaves. J Agric Food Chem 51: 2144-
2155.
randomized controlled trial on the use of malunggay (Moringa oleifera) for
augmentation of the volume of breastmilk among non-nursing mothers of
preterm infants 49: 3-6.
70: 491S-499S.
extract of leaf of Moringa oleifera Lam in high-fat diet fed wistar rats. J
Ethnopharmacol 69: 21-25.
of thyroid hormone status in adult male and female rats. Pharmacol Res 41:
319-323.
Moringa oleifera leaf meal extract on gastric ulcer models in rat. Phytother Res
Niaziminin, a thiocarbamate from the leaves of Moringa oleifera, holds a strict
structural requirement for inhibition of tumour-promoter-induced Epstein-Barr
virus infection. Planta Med 64: 319-323.
acylated carbarnate and hypotensive thiocarbamate glycodies from Moringa
Antiinflammatory Effects of Moringa oleifera Root Extract. Pharm Biol 34:
207–212.
the rats of Moringa pterygosperma Geaertn. Ind J Pharmacol 29: 40-45.
hematological and hepatorenal functions of methanolic extract of Moringa
and the treatment of diabetes in Senegal: survey with patients. Fundam Clin
principle from Moringa oleifera Lam leaves effective against two
in rural communities from the Infectious Diseases Society of America. Clin Infect Dis
46: 155-164.
29. Mukhopadhyay D, Chattopadhyaya SP (2000) Phytochemicals and uses of
Moringa oleifera leaves in Ugandan rural communities. J Med Plant Res 4:
753-757.
Antinflammatory Effects of Moringa oleifera Root Extract. Pharm Biol 34:
207–212.


