Human Umbilical Cord (HUC) Vessels: A Novel Substitute for Arterial Bypass Grafting

Biplabendu Talukdar¹,²*, Swarnendu Datta³, Priyodarshi Sengupta⁴, Plaban Mukherjee⁵, Ushnish Chakravarty³

¹Department of Immunohaematology and Blood Transfusion, Medical College Hospital, Kolkata, West Bengal, India; ²Department of Biochemistry and Biophysics, Kalyani University, Kalyani, West Bengal, India; ³Department of Cardio Thoracic and Vascular Surgery, MCH, Kolkata, India; ⁴Department of Regenerative Medicine and Translational Science, STM, Kolkata, India; ⁵Department of CTVS, MCH, Kolkata, West Bengal, India

ABSTRACT
Human Umbilical Cord (HUC) vessels and Wharton’s jelly containing Mesenchymal Stem Cells may novel substitute for coronary vessels in reconstructive Coronary Artery Bypass Grafting (CABG) surgery. In developing countries, ischemic cardiac tissue injury-related mortality is higher than in developed countries. Organ and tissue transplants may amend the disease but the availability of donor tissue, tissue matching, and procurement of organs are important parameters for successful grafting. Allogenic or autologous preserved HUC vessels along with Wharton’s jelly containing MSCs having human Cord Lining Epithelial Cells (CLECs) which did not express the MHC class II antigen HLA-DR but the non-classical MHC class I antigen HLA-G and HLA-E lacked. HUC-MSC also expresses exosome, Smad protein, TGF beta, BMP also helps in cardiomyocytes regeneration and neo-vascularisation. So the chances of graft rejection is lower and long term survival of graft also initiated. Therefore, human umbilical cord may be used as a substitute for artery or venous graft of vascular and reconstructing surgery. Moreover, chances of recurrent surgical or interventional is diminished for maintaining the patency of coronary vessels.

Keywords: Fetal stem cell; Immune tolerance; Coronary artery bypass grafting; Transfusion transmitted infection

Abbreviations: HUC: Human Umbilical Cord; MSC: Mesenchymal Stem Cells; HLA: Human Leukocyte Antigen; HUV: Human Umbilical Vein; PCI: Percutaneous Coronary Intervention; CABG: Coronary Artery Bypass grafting; TTI: Transfusion Transmitted Infection; CAD: Coronary Artery Disease

INTRODUCTION
Coronary Artery Disease (CAD) is a most common cause of death and disability in developed and developing countries. Globally 17.5 million deaths have been noted in 2012 [1] due to this disease. More than 75% of deaths, observed in developing countries. Mortality related to cardiovascular disease is decreasing rapidly in developed countries. Whereas death or disability related to myocardial disease as been increasing in developing countries due to industrialization, urbanization, food habit changes and changes in the lifestyle of people [2,3]. Percutaneous Coronary Intervention (PCI) or Coronary Artery Bypass Grafting (CABG) is the gold standard treatment for ischemic heart disease patients. Organ and tissue transplants may amend the disease but availability of donor tissue, tissue matching and procurement of organ are important parameters for successful graft.

Recently Human Umbilical Cord (HUC) has been broadly studied and current studies have revealed that HUC may be the potential substitute of vessels [4-7], ligaments [8], tendon and bone [9,10]. Human Cord Lining Epithelial Cells (CLECs) does not express the MHC class II antigen HLA-DR whereas the non-classical MHC class Ia antigen HLAG and HLA-E has a few immunomodulatory roles. HLAG protein decreases CD8 and

Correspondence to: Biplabendu Talukdar, Department of Immunohaematology and Blood Transfusion, Medical College Hospital, Kolkata, West Bengal, India, Tel: +919477305795; E-mail: drbiplabendutalukder@gmail.com

Received date: April 28, 2020; Accepted date: May 01, 2020; Published date: May 15, 2020

Copyright: © 2020 Talukdar B, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.
natural killer cells production. Therefore, human umbilical cord may be used as a substitute for artery or venous graft of vascular and reconstructing surgery.

HYPOTHESIS

We hypothesise that the vessels of Human Umbilical Cord (HUC) may be an effective novel substitute for reconstruction of the coronary artery for those having coronary artery diseases as well as peripheral vascular disease. Our hypothesis can be summarised as follows:

1. Allogenic substitute: Human umbilical cord, as a natural tissue product for reconstruction of the diseased coronary artery. It is collected from Transmission Transmitted Disease (TTD) screened mother of neonate right after parturition in a sterile manner. Umbilical arteries/veins help in surgical reconstruction of damage vessels to another person. HUC containing two arteries and one vein. It is also established that the HUC is a good source for Mesenchymal Stem Cells (HUC-MSCs) which can be differentiated into multiple lineage-specific cells that form bone, cartilage, liver, cardiac tissues [10,11]. Moreover, it is also established that the Wharton’s jelly that surrounds the Human Umbilical Vein (HUV) is rich in growth factors [12]. Thus HUC, with such a composition of MSC, living cells and growth factors, might be a promising material for restoration of the function of coronary artery.

2. Autologous substitute: An individual’s umbilical cord of patients, banked right after birth can come in handy for future use. It could be directly applied to directly reconstruct the patient’s own coronary artery. We hypothesise that the autologous HUC may also be used to reconstruct the coronary artery. The autologous HUC offers the following advantages: Firstly, the HUC-MSCs might differentiate into myocardial cells in vivo after transplantation, which might promote the collagen regeneration. Secondly, replacement of the scarred myocardial tissues by helping regeneration of new viable cardiac tissue without any immunologic graft rejection can also be predicted. Both allogenic and autologous substitute can be used to reconstruct the coronary artery without altering the normal cardiovascular anatomy. This operation does preserve the myocardial contractile function. Furthermore, the HUC is long enough to reconstruct the coronary artery more than once, if necessary (e.g., in case of postoperative anastomotic stricture).

3. Growth factors: MSCs and Wharton jelly helps in liberation of various growth factors, those are responsible for proliferation and differentiation of cells. For example, Epidermal Growth Factor (EGF) exerts a wide variety of biological effects, including the promotion of proliferation and differentiation of MSCs [18,19] Transforming Growth Factor Beta (TGF-β) plays important roles in cellular differentiation, BMP hormone secretion and immune function [18,19]. Fibroblast Growth Factor (FGF), EGF and TGF-β have been detected in the extracts of Wharton’s jelly [20].

4. Sources: The HUC is abundant in resource without ethical issues. It is usually discarded after delivery. Screened collecting the HUC after birth in sterile way does not carry any risk to the mother or new born. Some of investigators have been suggested the importance of banking the whole umbilical cord unit for research or future use in therapeutic purpose [21].

5. Collection, preservation and cryopreservation: Human umbilical cords obtained from the OT and were immediately stored at 4°C post-delivery. The whole processing of the umbilical artery/vein should start within 24 hours of its collection. Using a sharp dissection needle, the umbilical cords are removed under sterile conditions [22,23]. The decellularized or de novo cord blood vessels for vascular or surgical reconstruction and tissue engineering scaffolds, the saline cryopreservation medium composed of DMEM/α-MEM/EGM in presence of FBS and PenStrep can be used for storage at -20°C and the ratio of the volume of the cryopreservation medium and that of the umbilical vessel is maintained at 20:1 at a cooling rate of 1°C/min through vitrification and slow cooling process [24,25] (Figures 1 and 2).
Human umbilical cords obtained from the OT and were immediately stored at 4°C post-delivery. The whole processing of the umbilical artery/vein should start within 24 hours of its collection. Using a sharp dissection needle, the umbilical cords are removed under sterile conditions. Surgical scissors were inserted into the Wharton’s Jelly surrounding the arteries and the veins and the tissue was dissected from the vein and arterial vessels. [22,23]

The two arteries or the single vein separated should be immediately immersed in a phosphate buffer solution (PBS, pH: 7.4) supplemented with penicillin (100 U/mL) and streptomycin at 4°C (100 μg/mL). [22]

The umbilical vessels (arteries/veins) can be cut into small pieces (5 to 6 cm in length) further and then washed with PBS (× 2 times) [22]

Decellularization: The 5-6 cm length umbilical vessels (arteries/veins) are incubated between 14 to 22 hours in the presence of buffers like 8 mM CHAPS, 1 M NaCl and 25 mM EDTA in PBS. [22]

Following incubation, the umbilical cord arteries/veins are washed in PBS for 48 hours followed by a further incubation with hypotonic SDS detergent for another 14-22 hours. This is followed by another PBS wash for the next 48 hours to remove any traces of detergents completely. [22]

A further incubation at 37°C for 48 hours is followed by suspending the umbilical vessels in endothelial growth media (EGM) or DMEM containing 12% foetal bovine serum, 100 U/mL of penicillin and 100 μg/mL of streptomycin, followed by PBS wash at 4°C for up to 2 weeks. [22]

Cryopreservation: As the decellularized umbilical vessels are devoid of any cellular components and is constituted of only the extracellular matrix and its components, in such cases the cryopreservation media does not necessarily need to contain any cryoprotectants. Cryoprotectants are essential during the cellular preservation process when the cord blood vessels are freshly collected along with the cellular components[24].

In decellularized cord blood vessels for vascular or surgical reconstruction and tissue engineering scaffolds, the saline cryopreservation medium composed of DMEM/α-MEM/EGM in presence of PBS and PenStrep can be used for storage at −20°C and the ratio of the volume of the cryopreserving medium and that of the umbilical vessel is maintained at 20:1 at a cooling rate of 1 °C/min through vitrification and slow cooling process. [24]

Figure 1: Collection and isolation of the cord blood vessels (arteries and veins).

The above protocol is for cryopreservation of umbilical cord blood derived vessels which includes both arteries and vein used as a biomaterial for vascular constructs and tissue engineering applications. This protocol does not include the storage of the freshly collected umbilical cord containing the cellular components of the vessels [24].

Investigations have shown that slow cooling process is favourable than vitrification process of freezing the umbilical cord vessel as slow cooling helps in maintaining the intact architecture of the umbilical cord blood tissue and has shown cell proliferation in vitro when fresh samples along with the cellular components are cryopreserved [25]. Efficiency of the decellularized human umbilical artery can be assessed with time to time DNA histology and assay staining protocol before and after cryopreserving [22-24].
DISCUSSION

Allogenic ABO matched with recipient or autologous preserved at -120°C Human Umbilical Cord (HUC) vessels are used for surgical reconstruction. Autologous or allogeneic Umbilical artery/vein is preferable considering the diameter of existing coronary vessels of recipients. Preserved autologous umbilical cord vessels used for reconstruction after thawing at normal room temperature. Sclerosed or atheromatous narrowed segmental coronary vessels reconstructed with patent umbilical vessels (Figure 3). HUC derived mesenchymal stem cells after surgical vascular reconstruction as an alternative to coronary vessels helps to maintain the vascularity of cardiomyocytes. Exosomes of HUC MSC helps in the release of Smad protein from the intracellular part of viable cardiomyocytes. Smad protein helps in signal transduction from extracellular to intracellular space with the help of Transforming Growth Factor Beta (TGF Beta). After signal transduction Smad protein helps in gene transcription. Transcription of genes improves the cardiac systolic function by protecting myocardial cells from apoptosis and by promoting angiogenesis by expression of Bcl-2 family [26,27]. Exosomes also promote cell repair through regulating Smad7 in cardiomyocytes [24]. HUC MSC derived TGF beta and BMP also in self renewal and maintenance of cardiac electrophysiology by various means [28,29], given in Figure 4.

CONCLUSION

We hypothesise that the HUC may be a novel substitute for CABG or any other vascular surgery, which also reduces morbidity and DALI (Disability Associated Life Index).

ACKNOWLEDGEMENT

I would like to thank Professor Parsun Bhattacharya, Professor Niranjan Bhattacharya, Professor Rita Ghosh, Dr. Abhijit Mandal, Dr. Chikam Maity, Mr. Smarajit Roy, Miss. Seoti Talukder, Mrs. Sanchayita Talukder and Mr. Sayan Talukdar for their constant support to help me successfully bringing out the manuscript.

CONFLICTS OF INTEREST

The authors declare that there is no conflict of interest regarding the publication of this paper.

REFERENCES

