Human – T Lymphotropic Virus 1 (HTLV-1) Among Blood Donors in Ogbomoso, Oyo State, Nigeria

Oladipo EK1*, Akinpelu OO2, Oladipo AA3, Afolabi AY4, Popoola B4, Edowhoro G5 and John F6
1Department of Pure and Applied Biology (Microbiology / Virology Unit), Ladok Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
2Department of Haematology, College of Health Sciences, Ladok Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
3Department ofHaematology and Blood Transfusion Services, Obafemi Awolowo University Teaching Hospital Complex, Ile Ife, Osun State, Nigeria
4Virology Department, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
5Department of Haematology, Bowen University Teaching Hospital, Ogbomoso, Oyo State, Nigeria
6Department ofScience Laboratory Technology, Ladok Akintola University of Technology, Ogbomoso, Oyo State, Nigeria

Abstract

This study was designed to determine the seroprevalence of Human T- Lymphotropic Virus 1 (HTLV-1) among blood donors in Ogbomoso, Oyo State, Nigeria. Three hundred (300) consenting potential blood donors were recruited into the study over a period of three months (May to July, 2013). Each subject was screened for HIV, HBsAg and HCV and a structured questionnaire was administered. A total of 93 (male = 63; female = 30) subjects with mean age of 45±2.3 years previously tested negative for HIV, HBsAg and HCV were screened for HTLV-1 antibodies using Enzyme Linked Immunosorbent Assay (ELISA). Out of 93 subjects tested, 24 (25.8%) were positive for both anti-HTLV-1 IgM and anti-HTLV-1 IgG. Anti-HTLV-1 IgM was highest among the subjects in the age group 18-24, 13(30.4%), male 13(20.6%), single 14 (31.4%) and student 14 (37.8%) while Anti-HTLV-1 IgG was highest among the subjects in the age group 18-24, 15 (45.5%), female 12 (19.1%), single 14 (27.5%) and student 14 (37.8%). These results provide more and further evidence that Human T-Lymphotropic Virus 1 is present among blood donors in Ogbomoso and is also one of the transfusion transmissible viral infections.

Keywords: Blood donors; HTLV-1; IgM; IgG; Seroprevalence; ELISA; Ogbomoso

Introduction

Human T-cell Lymphotropic Virus (HTLV) is also called Adult T-cell Lymphoma Virus (ATCL) or Adult T-Cell Leukemia Lymphoma (ATCLL). This virus is from the family of Retroviridae, subgroup of Orthoretrovirinae, genus of Delta retrovirus and species simian T-Lymphotropic Virus. This virus was the first retrovirus to be discovered and identified in 1980 by Poiesz, et al. [1]. There are two types of HTLV, designated HTLV 1 and II both of which are transmitted via several routes including sexual transmission, vertical transmission, breastfeeding, contaminated blood transfusion, sharing of sharp objects like needle and syringes or transplantation of infected organs and tissues e.g. kidney, Remeasar, et al. [2]. In areas where HTLV-1 is endemic, its sero conversions have been observed in 44 - 63% of cases of individuals who received blood contaminated with HTLV-1 infected cells. The prevalence of contamination of the blood with HTLV-1 has also been reported to be 0.3% in United States of America and 0.7% in Brazil by Abbassadegan, et al. [3]. HTLV-1 transmission by transfusion of cellular blood components has also been reported, requiring testing of blood products in blood banks in high prevalence regions. Cellular blood components transmit HTLV-1 with 20 - 63% efficiency. Due to the asymptomatic character of the viral infection, infected persons may donate blood without knowledge of their infection by Remesar, et al. [2]. Since transfusion is one of the major routes of transmission of HTLV-1 and its screening has not been included into the existing blood donor protocol in Nigeria, there is a need to investigate the rate at which HTLV-1 is transmitted via blood transfusion. Little is known about the pattern of prevalence of HTLV-1 in Ogbomosso; this study is therefore designed to determine the seroprevalence of HTLV-1 among blood donors seen at a hospital-based transfusion service in Ogbomosso.

Materials and Methods

Study centre

The study centre for this study is the blood bank of Bowen University Teaching Hospital located in Ogbomosso in Oyo State, which is situated in the tropical belt of Southern Western Nigeria.

Study population

Blood samples for testing were obtained from potential donors at the Blood Bank of the Bowen University Teaching Hospital, Ogbomosso, which registers an average of 20 replacement donors daily as described by Oladipo et al. [4]. All consenting donors were recruited consecutively between May- July, 2013. Approval was obtained from the hospital’s research and ethics committee. Participants were asked to and helped to fill the structured questionnaires, including demographic information, history of previous exposure to blood transfusion and donation. The exclusion criteria were: any history of chronic illness (e.g. hypertension, etc.), ages below 18 years or above 59 years (recommended age for blood donation) and seropositivity to HIV, HBV and HCV.

A total of three hundred (300) potential blood donors were invited to participate in the study. They were subjected to HIV, HBV and HCV rapid screening test before recruiting them into the HTLV study. HIV testing was carried out using Determine HIV 1/2TM Test Kit by Abbott Japan Co., Ltd. Minto-Ku, Tokyo, Japan while HBV and HCV Test was likewise done using Test Kit by AbonBispharm, Hangzhou Co. Ltd, China. Subjects who tested positive to either HIV, HBV or HCV after consenting were excluded from the study.

Sample collection and analysis

Of the three hundred donors, 93 subjects were qualified to take part in the study. A blood sample of 5 mls was collected into a sterile,
plain bottle which was centrifuged at 3,000 rpm for 10 minutes. The serum was separated into sterile cryovials and stored at -20°C prior to analysis.

The qualified participants’ sera were tested for IgM and IgG HTLV-1 by the Enzyme-Linked Immunosorbent Assay (ELISA) test. The HTLV-1 specific IgM/IgG antibodies were studied by the commercial WKEA Med Supplies Corp, HTLV-1 IgM/IgG ELISA Kit (China), according to the manufacturer’s instructions. All the specimens were analyzed using the enzyme immunoassay test. The presence or absence of HTLV-1 IgM/IgG was determined by comparing the sample absorbance with the absorbance of the cut-off calibrator. The data obtained were subjected to descriptive statistical analysis using SPSS version 17.0 (SPSS Inc Chicago, III, USA).

Results

Figure 1 shows prevalence of HTLV-1 antibodies in the study subjects. Out of 93 subjects whose sera were tested using ELISA, 24 (25.8%) were positive for both HTLV-1 IgM and IgG. To facilitate statistical analysis, subjects were grouped in age ranges of equal intervals (Table 1). The highest prevalence of anti-HTLV-1 IgG (45.5%) was found in subjects whose ages were between 18-24 years and the highest prevalence of anti-HTLV-1 IgM (39.4%) was also found in subjects whose ages were between 18-24 years as shown in Table 1. Subjects within the age range of 25-31 years had 4 (15.4%) and 2 (7.7%) prevalence of anti-HTLV-1 IgM and anti-HTLV-1 IgG respectively. Among other age groups the prevalence of anti-HTLV-1 IgM and anti-HTLV-1 IgG was as follows; 32-38 years had 5 (27.8%), 39-45 years had 1 (9.2%) and 46-52 years had 1 (25.0%) and 53-59 years had 0 (0%). The prevalence of HTLV antibodies among single and married subjects is shown in Figure 2. Out of a total of 51 (54.8%) singles, 10 (19.6%) tested positive for both HTLV-1 IgM and HTLV-1 IgG. Among the married, 42 (45.2%) and 14 (33.3%) were positive for HTLV-1 IgM and HTLV-1 IgG respectively. The prevalence of HTLV-1 antibodies is higher among married subjects than the single individuals. The sex distribution of the study subjects tested for HTLV-1 antibody is shown in Figure 3. Out of 63 males, 13 (20.6%) were positive for anti-HTLV-1 IgM and 12 (19.1%) were positive for anti-HTLV-1 IgG. Among the 30 females, 11 (36.7%) were positive for anti-HTLV-1 IgM and 12 (40.0%) were positive for anti-HTLV-1 IgG. A total of 93 study subjects with different occupational groups were tested for HTLV-1 antibodies. The prevalence of HTLV-1 antibodies in civil servant, student, artisan and trading is shown in Table 2. A significant difference was observed in the mean seropositive group in the analysis of variance of the serological pattern of HTLV-1, with a mean of 3 for IgG+IgM-, 22 for IgG+IgM+, 21 for IgG-IgM- and a mean of 2 for IgG-.
prevalence of anti-HTLV IgM and IgG among the marital subjects was significantly different. Higher seroprevalence of HTLV-I was observed among the married than the singles due to the fact that the married could be likely engaged more in sexual activities than the singles and which could put them at higher risk of the infection. From this study it was observed that there is recent infection of HTLV-I from the variance analysis conducted. The observed seroprevalence of HTLV-I antibodies among the potential blood donors in Ogbomoso, albeit a limited hospital based study, provides some information on the incidence of this infection in the community. It emphasizes the need for continuous epidemiological surveillance to help in the policy decision-making concerning blood safety because in Nigeria, no prospective blood donors are screened routinely for HTLV-I antibodies. Results of this study shows the prevalence of anti-HTLV IgM/IgG of 24.5% and 24.5% respectively which suggest that the virus ranks as one of the major transmissions transmissible viral infections.

Conflict of Interest

The authors declare that there is no conflict of interest concerning this research.

Acknowledgement

The authors acknowledge the subjects who consented to participate in the study and the entire staff of Diagnostic Laboratory Unit of Bowen University Teaching Hospital, Ogbomoso for their support during the study period.

References