ABSTRACT

Background: *Datura stramonium* Linn is one of the folkloric medicines in Ethiopia and demonstrated in vitro antidiabetic activity. Thus, the current study was carried out to evaluate antidiabetic activity of hydromethanolic seed extract in mice.

Methods: The seed of *Datura stramonium* was extract by using hydromethanol. The effect of the seed extract on blood glucose level was assessed after oral administration of 100, 200 and 400 mg/kg doses in normal, oral glucose loaded and Streptozocin-induced diabetic mice.

Antioxidant capacity of seed extract was evaluated by using a 2, 2-diphenyl-1-picrylhydrazyl assay.

Results: Hypoglycemic effect of all doses of seed extract was insignificant (p>0.05) in normoglycemic model but glucose reduction was significant (p<0.05 at 100 mg/kg, p<0.01 at 200 mg/kg and 400 mg/kg) with respect to negative control in oral glucose loaded mice. All doses of seed extract significantly (p<0.01) reduced blood glucose level on day 7 and 14 in STZ induced daily treated diabetic mice compared to the negative control. At the same time, 200 and 400 mg/kg doses of seed extract significantly (p<0.05) improved body weight of diabetic mice on day 7 and 14 but 100 mg/kg dose was delayed and significantly (p<0.05) increased body weight of mice on day 14 compared to the vehicle. The finding showed that antioxidant capacity of the seed extract was concentration dependent and comparable with ascorbic acid. IC50 of the seed extract and ascorbic was found to be 11.95 and 5.07 mg/mL, respectively.

Conclusion: The finding of the study showed that hydromethanolic seed extract of *Datura stramonium* Linn endowed significant antihyperglycemic and scavenging of free radicals.

Keywords: Diabetes, Streptozocin, *Datura stramonium*, antioxidant, Mice

INTRODUCTION

Diabetes mellitus is a chronic metabolic disorder characterized by hyperglycemia due to impaired insulin secretion or action or both. Uncontrol hyperglycemia cause suffering of the patients with life threatening complications (retinopathy, nephropathy, and peripheral neuropathy and acquired cardiovascular diseases)[1-5]. The prevalence and the burden of diabetes mellitus is very high in the world. In 2017, 425 million people (aged 20–79 years) live with diabetes and this number will rise to 629 million in 2045 globally [6]. The management of diabetes mellitus is challenging due to deleterious effects and limited efficacy of currently available antidiabetic drugs [7-9]. Medicinal plants with documented traditional uses are source of noble antidiabetic drugs and metformin (N, N dimethyl biguanide) is preferable antidiabetic drug derived from useful medicinal plant, *Galega officinalis* [10,11]. More than 800 plants have been used in the treatment of diabetes [12]. In recent years, catechol glycoside esters, isolated from the leaves of *Dodecaedenum grandiflora* showed comparable antidiabetic effect with metformin and protodioscin isolated from seed of fenugreek demonstrated significant blood glucose lowering effect in rats and human [12,13].

Datura stramonium Linn (Astenagra in Amharic) is one of the well-known medicinal plant that belonging to the genus Datura and the family Solanaceae and originates in Americas. But now a day the plant founds around the world, including the warmer regions...
of North, Central and South America, Europe, Asia, and Africa and distributed throughout the Ethiopia [14, 15]. The plant is a widespread annual plant and grows to 1.2 m high and the root is long, thick, fibrous, white and the stem is stout, erect, leafy, smooth, and pale yellow-green (Figure 1). The stem forks repeatedly into branches and each fork forms a leaf and a single, erect flower. Alanine, glutamate, phenylalanine, tyrosine (amino acids) and antimuscarinic drugs such as scopolamine, atropine and hyoscymine were isolated from seeds of Datura stramonium [16-19].

Datura stramonium Linn used to treat diabetes mellitus, asthma, gastrointestinal problems, wounds, inflammation and tumors traditionally [16, 20, 21]. Experimental studies revealed that Datura stramonium possesses antiepileptic, anti-obesity, anti-microbial, antiviral, anticholinergic and bronchodilator activities [16, 18, 21, 22]. The leaf and root extracts of Datura stramonium exhibited free radical scavenging and anti-inflammatory activities [21, 23]. Hydromethanolic root extract of the plant demonstrated significant radical scavenging and anti-inflammatory activities [21, 23].

Datura stramonium Linn [16-19]. More importantly, the seed extract of Datura stramonium demonstrated strong in vitro α-glycosidase and α-amylase inhibitory effect despite lack in vivo investigated for its potential antidiabetic activity. These call initiation to evaluate antidiabetic activities of hydromethanolic seed extract of Datura stramonium in vivo.

METHODS

Drugs, chemicals and instruments

The following drugs, chemicals and equipments were used in this experimental study.

Drugs: Streptozotocin (Sigma Aldrich, Germany), glibclamide, (Juplar Pharmaceuticals),
Chemicals: 80% methanol, FeCl₃ (MA, USA), NaOH (India), HCl (Suppertek Chemical), 40% glucose solution (Shandong, China),
Equipments: Lyophilizer, i-QARE DS-W® blood glucose meter, and test strips (Alliance International, New Taipei City, Taiwan),

Figure 1: Photograph of Datura stramonium Linn.

Antioxidant activity of the seed extract was evaluated in 2, 2-diphenyl-1-picrylhydrazyl method [30]. 3.9 ml of solution of DPPH (4 mg DPPH/100 ml methanol) was mixed with a 0.1 ml methanolic solution of different concentrations (5, 10, 20, 40, and 80 mg/mL) extract and incubated in the dark for half hour.
Acute oral toxicity test

Sign of toxicity and mortality associated with 2000 mg/kg loading hydromethanol seed extract of *D. stramonium* not exhibited on fasted female mice. Therefore, LD50 of hydromethanolic leaf extract is >2000 mg/kg. The three doses (100 mg/kg, 200 mg/kg and 400 mg/kg) of the leaf extract were determined based on acute toxicity result for experimental studies.

Phytochemical screening of hydromethanolic seed extract of *D. stramonium*

Qualitative preliminary phytochemical study showed that hydromethanolic seed extract contained saponins, alkaloids, flavonoids, phenols, tannins, terpenoids, glycosides and steroids (Table 1).

Antioxidant activity of the seed extract of *D. stramonium*

The finding of the study showed that free radical scavenging activity of the seed extract was concentration dependent and comparable to ascorbic acid. IC50 of the seed extract and ascorbic acid in the assay was found to be 11.95 and 5.07 mg/mL, respectively (Table 2).

Effect of hydromethanolic seed extract of *D. stramonium* in normoglycemic mice

All doses of hydromethanolic seed extract of *D. stramonium* was produced insignificant (p>0.05) hypoglycemic effect at all time points but standard drug (5 mg/kg glibeclamide) showed significant (p<0.001) hypoglycemic effect at 2, 4 and 6 hr with respect to 100 mg/kg dose and negative control (Table 3).

Statistical analysis

Data with a group and b/n the groups were compared by using one-way ANOVA followed by Tuckey's post hoc multiple comparison test. P-values <0.05 were considered statistically significant and SPSS Version 23 Software was used for statistical analysis.

RESULTS

Acute oral toxicity test

Sign of toxicity and mortality associated with 2000 mg/kg loading hydromethanol seed extract of *D. stramonium* not exhibited on fasted female mice. Therefore, LD50 of hydromethanolic leaf extract is >2000 mg/kg. The three doses (100 mg/kg, 200 mg/kg and 400 mg/kg) of the leaf extract were determined based on acute toxicity result for experimental studies.

Phytochemical screening of hydromethanolic seed extract of *D. stramonium*

Qualitative preliminary phytochemical study showed that hydromethanolic seed extract contained saponins, alkaloids, flavonoids, phenols, tannins, terpenoids, glycosides and steroids (Table 1).

Antioxidant activity of the seed extract of *D. stramonium*

The finding of the study showed that free radical scavenging activity of the seed extract was concentration dependent and comparable to ascorbic acid. IC50 of the seed extract and ascorbic acid in the assay was found to be 11.95 and 5.07 mg/mL, respectively (Table 2).

Effect of hydromethanolic seed extract of *D. stramonium* in normoglycemic mice

All doses of hydromethanolic seed extract of *D. stramonium* was produced insignificant (p>0.05) hypoglycemic effect at all time points but standard drug (5 mg/kg glibeclamide) showed significant (p<0.001) hypoglycemic effect at 2, 4 and 6 hr with respect to 100 mg/kg dose and negative control (Table 3).

Table 1: Phytochemical screening of 80% methanolic seed extract of *D. stramonium*.

<table>
<thead>
<tr>
<th>Phytoconstituents</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flavonoids</td>
<td>+</td>
</tr>
<tr>
<td>Phenols</td>
<td>+</td>
</tr>
<tr>
<td>Tannins</td>
<td>+</td>
</tr>
<tr>
<td>Saponins</td>
<td>+</td>
</tr>
<tr>
<td>Alkaloids</td>
<td>+</td>
</tr>
<tr>
<td>Terpenoids</td>
<td>+</td>
</tr>
<tr>
<td>Glycosides</td>
<td>+</td>
</tr>
<tr>
<td>Steroids</td>
<td>+</td>
</tr>
<tr>
<td>Anthraquinones</td>
<td>-</td>
</tr>
</tbody>
</table>

Keys: +: present, -: absent
Effect of hydromethanolic seed extract of *D. stramonium* on blood glucose level of oral glucose loaded mice

There was no significant variation in fasting blood glucose level the mice before oral glucose administration in all groups (Figure 2). The maximum blood glucose level was measured thirty minutes after oral glucose administration in all groups. BGL reduction of the seed extract was significantly (p<0.05 at 100 mg/kg, (p<0.01, at 200 mg/kg and 400 mg/kg) after 60 and 120 minutes oral glucose administration compared to the negative control. Blood glucose level reduction of 100 mg.kg dose was significantly (p<0.05) lower than 5 mg/kg dose glibeclamide (p<0.001, after 60 and 120 minutes).

Antihyperglycemic effects of glibeclamide

Antihyperglycemic effect of glibeclamide was significant (p<0.001) on day seven and fourteen compared to the diabetic control. There was no significant BGL variation among seed extract and standard drug in STZ induced model.

Effect of hydromethanolic seed extract of *D. stramonium* on body weight of diabetic mice

The seed extract at the doses of 200 mg/kg and 400 mg/kg significantly (p<0.05) increased BW of diabetic mice on day 7 and 14 compared to diabetic control (Table 5). Body weight improvement of 100 mg/kg dose was delayed and significantly (p<0.05) day 14 compared to the negative control. In addition, glibeclamide significantly (p<0.01) improved body weight of diabetic mice on day 7 and 14 with respect to negative control.

Discussion

DATURA STRAMONIUM has been used in Ethiopian folklore medicine and demonstrated in vitro blood glucose reduction activity by inhibiting α-glucosidase and α-amylase without in vitro test. Therefore, in

Table 2: Percentage of free radical scavenging activity of the seed extract of *D. stramonium*.

<table>
<thead>
<tr>
<th>Concentration (mg/mL)</th>
<th>% of DPPH Inhibition</th>
<th>IC50</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>28.22 ± 0.21</td>
<td>6.67 ± 0.71</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>45.66 ± 0.42</td>
<td>14.14 ± 0.53</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>66.81 ± 0.42</td>
<td>21.01 ± 0.41</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>80.26 ± 0.45</td>
<td>28.01 ± 0.31</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>92.53 ± 0.54</td>
<td>40.54 ± 0.27</td>
<td></td>
</tr>
</tbody>
</table>

Note: Values of % inhibition of DPPH free radical is described as Mean ± standard error of the Mean. DPPH-2,2-diphenyl-1-picrylhydrazine, AA-Ascorbic acid; SE-seed extract, IC-Inhibitory concentration

Table 3: Effect of hydromethanolic seed extract of *D. stramonium* in normoglycemic mice.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Fasting BGL (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0hr</td>
</tr>
<tr>
<td>10 ml/kg NC</td>
<td>254.62 ± 1.05</td>
</tr>
<tr>
<td>5 mg/kg GB</td>
<td>255.46 ± 0.34</td>
</tr>
<tr>
<td>100 mg/kg SE</td>
<td>256.06 ± 1.27</td>
</tr>
<tr>
<td>200 mg/kg SE</td>
<td>255.44 ± 0.88</td>
</tr>
<tr>
<td>400 mg/kg SE</td>
<td>255.89 ± 0.92</td>
</tr>
</tbody>
</table>

Key: Each data describes as mean ± standard error of the mean, n=6, *compared to negative control; *compared to 100 mg/kg, *compared to 5 mg/kg GB, 1 P<0.01; 2 P<0.001; BGL-blood glucose level; NC-negative control; GB-glibeclamide; SE-seed extract

Table 4: Antihyperglycemic effects of 80% methanolic seed extract of *D. stramonium* in diabetic mice.

<table>
<thead>
<tr>
<th>Group</th>
<th>Day 0</th>
<th>Day 7</th>
<th>Day 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 ml/kg NC</td>
<td>254.62 ± 1.05</td>
<td>266.00 ± 1.73</td>
<td>268.94 ± 0.49</td>
</tr>
<tr>
<td>5 mg/kg GB</td>
<td>255.46 ± 0.34</td>
<td>243.22 ± 0.42</td>
<td>240.18 ± 1.63</td>
</tr>
<tr>
<td>100 mg/kg SE</td>
<td>256.06 ± 1.27</td>
<td>255.06 ± 0.57</td>
<td>250.22 ± 0.29</td>
</tr>
<tr>
<td>200 mg/kg SE</td>
<td>255.44 ± 0.88</td>
<td>249.17 ± 1.06</td>
<td>248.55 ± 1.06</td>
</tr>
<tr>
<td>400 mg/kg SE</td>
<td>255.89 ± 0.92</td>
<td>246.45 ± 0.51</td>
<td>247.17 ± 0.25</td>
</tr>
</tbody>
</table>

Key: Each data describes as mean ± standard error of the mean, n=6, *compared to negative control; *compared to 5 mg/kg GB, 1 P<0.01; 2 P<0.001; BGL-blood glucose level; NC-negative control; GB-glibeclamide; SE-seed extract

Figure 2: Effect of hydromethanolic seed extract of *D. stramonium* on blood glucose level of oral glucose loaded mice.
vivo blood glucose lowering activity of hydromethanolic seed extract of *D. stramonium* was experimentally evaluated by using normoglycemic, oral glucose loaded and Streptozocin induced diabetic in mice. Hydromethanol (80% methanol) was selected as solvent of the extraction since a wide variety of polar and moderately polar phytomolecules extracted in hydromethanol [26, 35, 46].

The finding of this study showed that all doses of hydromethanolic seed extract were devoid significant hypoglycemic effect at all time points compared to negative control but glucose reduction of standard drug (5 mg/kg glibeclamide) was significant (p<0.01) at 2, 4, and 6 hr. Thus, mechanism of action of glucose lowering activity of seed extract and glibeclamide might not be the same. Similar to this finding, hydromethanolic seed extract of *Calpurnia aurea* [47] and root extract of *D. stramonium* [26] devoid significant hypoglycemic activity. In contrast, hydromethanolic leaf extract of *Caylusea abyssinica*, [35] leaf latex of *Aloe vera* [48] and *Aloe megalacantha* [49] demonstrated significant blood glucose lowering activity in normoglycemic model.

In glucose tolerance test, blood glucose reduction of the hydromethanolic seed extract was significantly (p<0.05 at 100 mg/kg, p<0.01, at 200 mg/kg and 400 mg/kg) after 60 and 120 minutes oral glucose administration compared to the negative control. Blood glucose reduction of 100 mg/kg dose was significantly (p<0.05) lower than 5 mg/kg dose glibeclamide (p<0.001, after 60- and 120-minutes). Similar to this finding hydromethanolic seed extract of *Calpurnia aurea*, [47] leaf extract of *Caylusea abyssinica*, [35] root extract of *D. stramonium*, [26] leaf extract of *M. stenopetala* [45] and *Aloe megalacantha* [49] have been demonstrated a significant glucose reduction in oral glucose loaded mice.

In STZ induced diabetic mice treated with 100 mg/kg, 200 mg/kg and 400 mg/kg doses of the hydromethanolic seed extract showed significant (p<0.01) glucose level reduction on day 7 and 14 with respect to diabetic control. This showed that the plant endowed antidiabetic activity and in line with administration of the same dose hydromethanolic seed extract of *Calpurnia aurea*, [47] root extract of *D. stramonium*, [26] leaf extract of *M. stenopetala*, [45] leaf latex of *Aloe megalacantha* [49] in streptozotocin-induced diabetic model. In another study, administration of leaf extract of *A. vera* at doses of 200 and 400 mg/kg showed comparable glucose reduction with 50 mg/kg metformin [50]. Seed extract of *Datura metel* in the genus *Datura*, has been showed to have significant blood glucose lowering activity [51].

At the same time, there was significant improvement of body weight in seed extract and standard drug treated groups in respect to diabetic control. Body weight of the mice treated with all doses of the hydromethanolic seed extract significantly improved on day 7 and 14. Similar to this finding, many plant extracts possess beneficial effect in the prevention of hyperglycemia induced muscle wastage [52-54] and similar result was observed in this study.

Antioxidant capacity hydromethanolic seed extract of *Stramonium* was determined in 2,2-diphenyl-1-picrylhydrazine (DPPH) [55]. Free radical scavenging property of seed extract was concentration dependent and comparable with standard antioxidant (ascorbic acid). Similar finding reported that strong antioxidant activity of leaf latex and isolated compound of *Aloe schelpei*, [56] and leaf latex of *Aloe megalacantha* [49] in 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay. Plant derived supplement prevent devastating effect of oxidative stress (ROS) in chronic disease like DM and *Datura stramonium* might offer health benefit through antioxidant property in chronic diseases.

Phytomolecules have been demonstrated blood glucose lowering activity through different mechanisms. They increase glucose uptake by augmenting insulin action [57] and increase GLUT 2 expression and promoting translocation GLUT4 by flavonoids, [58] increase insulin secretion, [59] reduced carbohydrate digestion and absorption by inhibiting α-glucosidase and α-amylase, [45, 58, 60, 61] augment β-cells proliferation and regeneration [45, 59] preventing pancreatic β-cells dysfunction through free radical scavenging action by tannins and phenols like flavonoids [62-64] or by any other unknown mechanisms. In the present finding, the preliminary phytochemical analysis of the hydromethanolic seed extract of *D. stramonium* has phenolic compounds, anthraquinones, glycosides, saponins, terpenoids, tannins and flavonoids. Therefore, the antidiabetic of the hydromethanolic seed extract could elicit a single or synergetic action of these metabolites.

CONCLUSION

The finding of the study showed that hydromethanolic seed extract of *Datura stramonium* endowed significant blood glucose lowering and antioxidant activity. Further studies are required for bioassay guided fractionation, isolation and characterization of active compound(s) that possess glucose lowering activity.

DECLARATIONS

Ethics approval

The study was conducted according to OECD Guidelines and the Guide for the Care and Use of Laboratory Animals. Ethical approval was obtained from the ethical review committee of School of pharmacy, college of medicine and health sciences, Wollo University.

AVAILABILITY OF DATA AND MATERIALS

All the datasets used/or analyzed during the current study are available from the corresponding author on reasonable request.

COMPETING INTERESTS

The authors declared that they do not have any conflict of interest.

FUNDING

Not applicable

AUTHORS’ CONTRIBUTIONS

BC and GG have contributed to conception, design, analysis

AUTHORS’ CONTRIBUTIONS

BC and GG have contributed to conception, design, analysis
and interpretation of data, drafting the article and revising the manuscript and gave final approval for publication.

ACKNOWLEDGMENTS

We would like to acknowledge Wollo University for providing the necessary facilities in this study.

REFERENCES

7. Rao MU, Sreenivasulu M, Chengaiah B, Reddy KJ, Chetty CM. Phytochemical investigation and interpretation of data, drafting the article and revising the manuscript and gave final approval for publication.

ACKNOWLEDGMENTS

We would like to acknowledge Wollo University for providing the necessary facilities in this study.

REFERENCES

7. Rao MU, Sreenivasulu M, Chengaiah B, Reddy KJ, Chetty CM. Phytochemical investigation and interpretation of data, drafting the article and revising the manuscript and gave final approval for publication.

ACKNOWLEDGMENTS

We would like to acknowledge Wollo University for providing the necessary facilities in this study.

REFERENCES

7. Rao MU, Sreenivasulu M, Chengaiah B, Reddy KJ, Chetty CM. Phytochemical investigation and interpretation of data, drafting the article and revising the manuscript and gave final approval for publication.

ACKNOWLEDGMENTS

We would like to acknowledge Wollo University for providing the necessary facilities in this study.

REFERENCES

7. Rao MU, Sreenivasulu M, Chengaiah B, Reddy KJ, Chetty CM. Phytochemical investigation and interpretation of data, drafting the article and revising the manuscript and gave final approval for publication.

ACKNOWLEDGMENTS

We would like to acknowledge Wollo University for providing the necessary facilities in this study.

