Effects of Clove Oil as An Anesthetic on Some Hematological Parameters of *carassius auratus*

Shahedah Abdolazizi, Edris Ghaderi, Noshin Naghdi, Barzan Bahrami Kamangar

Department of Fisheries Science Faculty of Natural Resources University of Kurdistan Sanandaj, 416, Iran

Abstract

Two levels of clove oil concentrations (0, 75, and 150 ppm) were prepared in 3 separate aquariums, each include 15 fish goldfish, *Carassius auratus* (average weight of 65 ± 5 g). Fish were exposed to different concentrations of clove oil and kept in aquariums at 18°C until they reach to stage 4 of anesthesia. Blood samples were taken from caudal vein at 0, 4, and 24 hours after anesthesia. Red blood cell count (RBC), hemoglobin concentration (Hb), hematocrit (PCV), white blood cell count (WBC) and the differential leukocyte count (leukogram) were determined by standard hematology method. Results showed that there were no significant differences between values of Hb, PCV and leukogram in each treatment in compare to the same control group (P > 0.05); however, WBC was significantly lower at 4 hours for 150 ppm clove oil treatment group and then returned to normal level 24 hours post anesthesia (P < 0.05). Moreover, RBC in this group was increased significantly after 24 h post anesthesia (P < 0.05). The induction time was less for 150 than 75 ppm clove oil treatment group (90 and 180 seconds respectively). Our results verified that using clove oil up to 75 ppm dose not have irreversible hematological side effect to the goldfish.

Keywords: Clove oil, Hematology, Goldfish, Anesthesia induction time

Introduction

A variety of anesthetics are using in aquaculture industry to aid fish handling, transportation and artificial propagation. They are used mainly in order to reduce stress level and to prevent fish damage during their handling. To select an anesthetic agent for a particular propose in fisheries science, several factor such as; the convenience for use, safety to the fish, human and environment, effectiveness, physiological perturbations and its cost may be consider by user [1]. The most commonly used fish anesthetic is tricaine methanesulfonate (MS-222) [2]. Other chemical agents such as, benzocaine (ethyl paraaminobenzoate) [3], 2-phenoxyethanol, metomidate [4], and carbon dioxide [1] were used to anesthetize fish in aquaculture or biological researches. Each anesthetic has some advantage and disadvantage to use in aquaculture. For example MS-222, beside its relative expensive cost, is regarded as a carcinogenic and also a 21-day withdrawal period is required if the fish is intended for human consumption [1]. Clove oil is an essential oil distilled from stems, leaves and flower buds of the clove plant, Eugenia caryophyllata. The most active component of clove oil is eugenol (4-allyl-methoxyphenol) makes up 70 to 90% by weight of clove oil [4-5]. Clove oil efficiency has recently been examined as fish anesthesia induction. For example MS-222, beside its relative expensive cost, is regarded as a carcinogenic and also a 21-day withdrawal period is required if the fish is intended for human consumption [1].

Material and Methods

The experiment was carried out at the Fish biology laboratory, University of Kurdistan in 2009. Goldfish *Carassius auratus* were purchased from a local ornamental fish dealer. They acclimatized for two weeks in 500-l circular tanks. During this period, fish were fed by hand twice a day. Forty five fish (mean body weight 65 ± 5 g) from this batch were selected 48 h before the experiment and randomly divided into three groups and stocked at a density of 15 fish per 121 liter aquariums. Water temperature was 18 ± 2°C and continuously aerated with a 10 cm air stone. The fish were fasted for 24 h prior the experiment. The clove oil was offered by the SHFA Company (Sanandaj, Iran) and used in two concentrations and control, 0, 0.075 and 0.15 milliliter per liter (0, 75 and 150 ppm). For each treatment, 15 fish were placed in a well-aerated anesthetic bath containing the above mentioned concentration of clove oil. Fish were emergence to anesthetic bath until they reach to stage 4 of anesthesia. Loss of reflex activity, no reaction to strong external stimuli [14]. Fish then were returned to recovery aquariums. From each treatment group, blood samples were taken at 0, 4 and 24 hours after fish anesthetizing from 5 individual. In order to reduce effects result from fish maintaining during the experiment, the value from each treatment was compared with the same time value from the control group. Blood was drawn from the caudal vein using a needle and syringe. EDTA was used as anticoagulant. The indices used to evaluate the hematological profile were included; white blood cell count (WBC), red blood cell count (RBC), hemoglobin concentration (Hb), hematocrite (PCV) and the differential leukocyte count (leukogram). The procedures were

Corresponding authors: Barzan Bahrami Kamangar, Department of Fisheries Science Faculty of Natural Resources University of Kurdistan Sanandaj, 416, Iran, Tel. +98 871 6620551; Fax +98 871 6620550; E-mail: bbkamangar@buk.ac.ir

Received November 03, 2010; Accepted January 26, 2011; Published January 28, 2011

Copyright: © 2011 Abdolazizi S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
based on methods described for fish hematology [15]. The values of Hb, PCV, RBC and WBC were expressed in g/l, l/l, T/l (Tera = 10^12) and G/l (Giga = 10^9) respectively. Statistical analysis was performed using the MSTAT-C software program (Michigan State University). Two ways analysis of variance followed by Duncan’s multiple range tests was used to investigate possible differences between treatments. Significant differences were accepted if the P value was less than 0.05.

Results

The results showed that applied clove oil concentrations were effective enough to make anesthetic in goldfish. The induction time to reach the stage 4 of anesthesia was 180 and 90 seconds for 75 and 150 ppm clove oil concentrations respectively. Effects of clove oil on the hematological indices of goldfish are showed in Figure1a and Figure1b (Table 1). Values of hematological indices in two experimental groups of 75 and 150 ppm were compared with the corresponding values in the control group (0 ppm clove oil). The RBC was significantly increased 24 h post anesthesia within 150 ppm clove oil treatment group in compare with control group (p < 0.05). A significant decrease of WBC in the 150 ppm treatment group was also observed 4 h after anesthesia in compare with control group (p < 0.05). This value was returned to the normal level after 24 h of anesthesia. The other indices (Hb, PCV and

![Figure 1: Effect of different clove oil concentrations on WBC (a) and RBC (b) values (mean ± SEM) of gold fish after 0, 4 and 24 hours exposures. Different letters indicate a significant difference for each variable (P < 0.05).](image-url)
relatively safe anesthetic agent, but further studies are required to detect any possible toxicity effect on fish.

Acknowledgement

The authors wish to express their thanks to SHAFA manager Company, for their offering clove oil.

References

