Effects of Black and Green Tea Consumption on Blood Pressure and Liver Enzymes: A Randomized Controlled Trial

Iman A Hakim1,2*, Linda Garland2, Robin Harris1,2 and H-H Sherry Chow2
1Mel and Enid Zuckerman College of Public Health, USA
2University of Arizona Cancer Center, The University of Arizona, Tucson, Arizona, USA

Abstract

Background: The effect on tea consumption on blood pressure and liver enzymes are controversial. The beneficial effects of long-term ingestion of black and green tea on systolic and diastolic blood pressure have been suggested by several studies.

Objectives: The overall goal of this study was to determine the effects of high tea consumption on blood pressure and liver enzymes

Design: We completed a 6-month randomized, controlled, double-blinded trial in a group of former and current smokers who were randomized to receive black or green tea preparations or a matching placebo.

Results: A total of 146 participants (80 females and 66 males) were enrolled in the study. At the end of the 6-month intervention, women in the black tea group showed a 4 mmHg decrease ($p = 0.01$) in systolic blood pressure while female in the green tea group showed a 30.1% decrease ($p = 0.035$) in Alanine transaminase (ALT). No significant changes were observed in men.

Conclusion: Our data confirm previous findings related to the beneficial effect of black tea on blood pressure and of green tea on serum liver enzymes especially among females. In addition, our study showed that long-term regular consumption of black tea and green is safe.

Keywords: Tea; Gender; Blood pressure; Liver enzymes; Clinical trial; Smokers

Abbreviations: AST: Aspartate Transaminase; ALT: Alanine Transaminase; BP: Blood Pressure; CVD: Cardiovascular Disease; DBP: Diastolic Blood Pressure; SBP: Systolic Blood Pressure.

Introduction

Smoking has been linked to uncontrolled blood pressure (BP). It is well known that BP levels change with age. Systolic blood pressure (SBP) increases from adolescence until old age, while diastolic blood pressure (DBP) increases until age 50 years and then decreases [1]. The risk of cardiovascular disease (CVD) mortality increases gradually throughout the range of BP starting at pre-hypertensive ranges of SBP (120–139 mmHg) and DBP (80–89 mmHg) [2]. Therefore, small changes in BP through dietary interventions may have a significant impact on reducing the risk especially among former and current smokers.

A large number of animal and epidemiologic studies as well as small-size clinical trials have investigated the relationship between tea consumption and BP, with inconsistent outcomes [3-7]. Despite of these conflicting results, green tea extracts (GTE) have been increasingly used by the general population as an ingredient in different dietary supplements. Some concerns have been raised about the safety of the intake of high doses of GTE. A systematic review revealed that in most cases, there were multiple agents involved and the committee recommended taking GTE with meals [8]. However, drinking green tea has not been associated with liver injury or serum aminotransferase elevations [9].

Therefore, we examined in the context of a randomized, controlled, double-blinded trial the efficacy of regular black and green tea drinking in reducing BP among current and former smokers. We also examined the impact of black and green tea consumption on liver enzymes in this population of middle-aged and elderly former and current smokers.

Subjects and Methods

Study population

We recruited current and former smokers between 40 and 80 years of age. Subjects were screened to exclude regular tea drinkers, pregnant women, history of cancer, current drug or alcohol abusers, individuals with an abnormal liver function blood test or those currently being treated with antidepressants. The study was approved by the Institutional Review Board of the University of Arizona, and all of the subjects provided informed consent before enrollment.

Study protocol

The study protocol and data collection procedures were described in details elsewhere [10]. In brief, the study was a 3-arm double-blinded randomized placebo-controlled tea intervention trial. Each subject was randomly assigned to drink 4 cups (12 oz. each) of black tea, green tea, or placebo tea daily for 6 months. Study participants were asked to maintain the beverage consumption pattern (4 cups/day) for 6 months, returning to the clinic at monthly intervals. Blood and urine samples were collected at baseline, mid study (month 3) and end of the study (month 6). SBP (in mmHg) and DBP (in mmHg) were measured at

*Corresponding author: Iman A Hakim, Dean, Mel & Enid Zuckerman College of Public Health, 1295 N Martin Ave. P.O. Box 245163, Tucson, AZ 85724, USA, Tel: (520) 626-5355; Fax: (520) 626-8685; E-mail: ihakim@email.arizona.edu

Received January 12, 2018; Accepted January 22, 2018; Published January 31, 2018

Copyright: © 2018 Hakim IA, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
least 3 times with a minimum 5-minute interval, by using Omron MX3 plus automated oscillometric Blood Pressure Monitor (O-HEM-742-E; Matsusaka, Japan), according to standard operating procedures, by a well-trained research specialist. BP measurements were performed after participants had been seated for at least 5 minutes. Levels of serum glucose, ALT, and AST were determined at the central laboratory affiliated with the University of Arizona.

Statistical methods

Descriptive analyses were conducted by gender. Primary end points were changes in SBP, DBP, glucose, and liver enzymes (AST and ALT) from baseline to 6 months after commencement of intervention. Tests for significance of the change (pre-intervention versus post-intervention values) in SBP, DBP, AST and ALT were performed by gender. Results were expressed as mean ± standard deviation (SD). Multiple linear regression models were used to estimate the main effects of black and green tea intake on SBP, DBP, glucose, AST and ALT with or without adjustment for potential confounders. Data presented are adjusted for smoking status and years of smoking. Statistical tests were two-sided with a significant level of 0.05. All statistical analyses were conducted using Stata Statistical Software (Stata 12).

Results

Of the 154 randomized participants, 146 (80 females and 66 males) current and former smokers completed the 6-month intervention. There were no statistically significant differences by gender, smoking variables, or treatment group between those who completed the study and those who did not. Among those who completed the study, compliance to the tea intervention was >95%.

Overall characteristics of the study population by gender are shown in Table 1. Our data showed that women have significantly lower SBP and DBP compared to placebo are shown in Table 4. Our data showed a significant decrease in SBP (4 mmHg) among females after 6 months of drinking black tea (p=0.01). Green tea consumption showed a significant decrease in SBP (4 mmHg) among females after the intervention values in SBP, DBP, AST and ALT were performed by gender. Results were expressed as mean ± standard deviation (SD). Multiple linear regression models were used to estimate the main effects of black and green tea intake on SBP, DBP, glucose, AST and ALT with or without adjustment for potential confounders. Data presented are adjusted for smoking status and years of smoking. Statistical tests were two-sided with a significant level of 0.05. All statistical analyses were conducted using Stata Statistical Software (Stata 12).

Results

Of the 154 randomized participants, 146 (80 females and 66 males) current and former smokers completed the 6-month intervention. There were no statistically significant differences by gender, smoking variables, or treatment group between those who completed the study and those who did not. Among those who completed the study, compliance to the tea intervention was >95%.

Overall characteristics of the study population by gender are shown in Table 1. Our data showed that women have significantly lower SBP and DBP compared to placebo are shown in Table 4. Our data showed a significant decrease in SBP (4 mmHg) among females after 6 months of drinking black tea (p=0.01). Green tea consumption showed a significant decrease in SBP (4 mmHg) among females after 6 months of drinking black tea (p=0.01). Green tea consumption showed a significant decrease in SBP (4 mmHg) among females after 6 months of drinking black tea (p=0.01). Green tea consumption showed a significant decrease in SBP (4 mmHg) among females after 6 months of drinking black tea (p=0.01). Green tea consumption showed a significant decrease in SBP (4 mmHg) among females after 6 months of drinking black tea (p=0.01). Green tea consumption showed a significant decrease in SBP (4 mmHg) among females after 6 months of drinking black tea (p=0.01). Green tea consumption showed a significant decrease in SBP (4 mmHg) among females after 6 months of drinking black tea (p=0.01). Green tea consumption showed a significant decrease in SBP (4 mmHg) among females after 6 months of drinking black tea (p=0.01). Green tea consumption showed a significant decrease in SBP (4 mmHg) among females after 6 months of drinking black tea (p=0.01).
There are a number of potential mechanisms for BP lowering effect by black tea. In addition to their antioxidant properties, tea flavonoids reduce plasma concentrations of endothelin-1 which could contribute to reduced vascular tone and lower BP [17]. Published data showed that regular ingestion of black tea significantly improved brachial artery vasodilator functions among people with elevated serum lipids [18] and reversed endothelial vasomotor dysfunction in patients with CVD [19]. A recent meta-analysis reported that endothelial function can be improved by tea consumption [20].

Serum AST and ALT are known as biomarkers for liver health. Our data showed that regular green tea consumption was associated with significant decrease in serum ALT among females. Recently published randomized clinical trials reported that GTE supplementation decreased ALT and AST levels after 12-week period in patients with non-alcoholic fatty liver disease [21-23]. Based on our results, daily tea consumption of green or black tea does not impair liver function in former or current smokers.

Conclusion

Our study has demonstrated that long-term regular consumption of black tea can result in significantly lower SBP in middle-aged and elderly women with normal to high-normal range BP. Given that a large proportion of the general populations have BP within the range included in this trial, make the results applicable to women at increased risk of hypertension.

Authors’ Contributions

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): I. A. Hakim and H.-H. Sherry Chow.

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): I. A. Hakim, R. B. Harris, and H.-H. Sherry Chow.

Writing, review, and/or revision of the manuscript: I. A. Hakim, R. B. Harris, L. L. Garland, H.-H. Sherry Chow.

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): I.A. Hakim and data manager.

Acknowledgements

This work was supported by a grant (DOD PR 023104) from the Department of Defense and the University of Arizona Cancer Center Support Grant (CA023074) from the National Cancer Institute (Bethesda, MD). Tea pouches were provided by Unilever Bestfoods, New Jersey, USA for the tea supply.

References

Table 4: Mean change (95% CI) in clinical outcomes by tea group compared with placebo.

<table>
<thead>
<tr>
<th></th>
<th>Females</th>
<th></th>
<th>p</th>
<th>Black Tea Mean change (95% CI)</th>
<th></th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systolic blood pressure</td>
<td>-4.4 (-12.2; 3.3)</td>
<td>0.26</td>
<td>-10.8 (-19.1; -2.6)</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diastolic blood pressure</td>
<td>2.7 (-3.3; 8.7)</td>
<td>0.37</td>
<td>-0.8 (-7.2; 5.5)</td>
<td>0.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood glucose</td>
<td>-5.0 (-15.5; 5.6)</td>
<td>0.35</td>
<td>5.7 (-4.6; 15.9)</td>
<td>0.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspartate transaminase</td>
<td>-10.8 (-24.7; 4.7)</td>
<td>0.18</td>
<td>8.0 (-6.4; 22.2)</td>
<td>0.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alanine transaminase</td>
<td>-7.4 (-14.3; -0.6)</td>
<td>0.035</td>
<td>0.9 (-5.8; 7.6)</td>
<td>0.79</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Males</th>
<th></th>
<th>p</th>
<th>Black Tea Mean change (95% CI)</th>
<th></th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systolic blood pressure</td>
<td>1.5 (-9.9; 12.8)</td>
<td>0.8</td>
<td>7.7 (-3.6; 18.9)</td>
<td>0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diastolic blood pressure</td>
<td>-4.4 (-13.3; 4.6)</td>
<td>0.33</td>
<td>-2.8</td>
<td>0.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood glucose</td>
<td>11.4 (-22.5; 45.3)</td>
<td>0.50</td>
<td>-0.20 (-3.9; 35.9)</td>
<td>0.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspartate transaminase</td>
<td>6.6 (-2.4; 15.5)</td>
<td>0.15</td>
<td>4.1 (-4.8; 13.0)</td>
<td>0.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alanine transaminase</td>
<td>4.7 (-5.2; 14.5)</td>
<td>0.34</td>
<td>0.96 (-6.9; 10.9)</td>
<td>0.85</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

