Effect of Exogenous Phosphocreatine on I_{to}, I_{Na}, and $I_{\text{Ca,L}}$ in Ischemic Ventricular Myocytes of Rat

Shi Xiang-Min*, Li Tian-De, Wang Yu-Tang, Chen Qi, Yang Ting-Shu and Shan Zhao-Liang
Department of Cardiology, General Hospital of PLA, Beijing 100853, China

Abstract

Aim: The aim of this study is to determine the effect of exogenous phosphocreatine (PCR) with different concentration on transient outward potassium (I_{to}), natrium (I_{Na}) and L-type calcium ($I_{\text{Ca,L}}$) current in ischemic ventricular cells of rat and to explore its role in the treatment of ischemic heart disease.

Methods: Ventricular cells were isolated enzymatically from left ventricular of rat. Peak I_{to}, I_{Na} and $I_{\text{Ca,L}}$ current were recorded using patch clamp techniques in the whole-cell configuration in the setting of cells superfused with normal Tyrode solution, simple simulated ischemic solution (SI), ischemic solution containing PCR with concentration of 5, 10, 20, and 30 mmol/L for 10 min respectively.

Results: Compared with simple simulated ischemic solution, peak I_{to}, I_{Na} and $I_{\text{Ca,L}}$ current and current density of ischemic solution containing PCR of 5, 10, 20, and 30 mmol/L significantly improved ($p<0.05$). There were statistical significance among PCR of 10 and 0, 5 mmol/L for I_{to}, I_{Na} and $I_{\text{Ca,L}}$ no significant difference were found among 10, 20 and 30 mmol/L for I_{Na} and $I_{\text{Ca,L}}$ ($p>0.05$). Compared with PCR of 10 mmol/L, peak I_{to} current and density decreased in the range of 20 and 30 mmol/L ($p<0.05$).

Conclusion: PCR could partly reverse the inhibition of I_{to}, I_{Na}, and $I_{\text{Ca,L}}$ current of rat ventricular cells under ischemic condition, which could be the ionic basis of therapeutic role in the treatment of ischemic heart disease. 0 ~ 10 mmol/L PCR exerted significant dose-effect relationship.

Keywords: Phosphocreatine; Ventricular cells; Patch clamp; I_{to}, I_{Na}, and $I_{\text{Ca,L}}$ current; Ischemia; Rat

Introduction

Coronary Heart Disease (CHD) is one of the most common cardiovascular diseases in clinical practice, which could proceed to Acute Coronary Syndrome (ACS) and result in malignant arrhythmias, sudden death, as well as heart failure [1]. Over the past few decades, percutaneous coronary intervention and Coronary Artery Bypass Graft (CABG) [2] have become established approach in the treatment of CHD, meanwhile, intensive drug therapy, including statin [3], antiplatelet [4], β-blocker and vasodilator, have been proved to effectively prevent progression to ACS and improve prognosis and quality of life for patients with CHD, with the advent of above-mentioned therapy, mortality rate of ACS was significantly reduced, however, the number of patients with ischemic cardiomyopathy and heart failure increased [5], even some novel drugs [6] have been introduced into the treatment of heart failure, the long term effect was still unsatisfactory. Metabolism optimization therapy is another promising alternative, trimetazidine [7], levocarnitine [8] and phosphocreatine (PCr) [9] supplement were believed to exert definite effects in the treatment of ischemia related heart disease, however, which was often ignored by physicians and not listed as the first line medication. PCr has been applied in clinical practice over two decades; early animal experimental and clinical study demonstrated its safety and effectiveness in the presence of ischemia [10], in recent years, PCr has been increasingly administered by athletes and proved to improve performance [11]. PCr added to arrest solution could facilitate restoration of heart function for patients undergoing cardiac surgery [12], simultaneously, it play a role in the treatment of acute myocarditis, Of which, CHD and ischemia related heart failure are the most common target diseases for PCr administration.

PCr is a pivotal substrate for ATP synthesis via the shuttle mechanism [13], many studies delineated that patients with CHD could benefit from administration of PCr [14], but the underlying ionic mechanism remain unclear. Intracellular ATP shortage could give rise to inhibition of transient outward potassium (I_{to}), natrium (I_{Na}) and L-type calcium ($I_{\text{Ca,L}}$) current, leading to arrhythmia and reduced ventricular contractility [15]. The aim of this study is to investigate the effect of PCr on I_{to}, I_{Na}, and $I_{\text{Ca,L}}$ current of ischemic rat ventricular cells and to explore its role in the treatment of ischemic heart diseases and related heart failure.

Materials and Methods

Materials

The following solutions were prepared: (1) Tyrode solution (in mmol/L): CaCl$_2$ 1.8, NaCl 116, KCl 5.4, NaHCO$_3$ 15, NaH$_2$PO$_4$ 1.4, MgSO$_4$ 1, Glucose 15, Taurine 30, pH was adjusted to 7.4 with HCL; (2) Ca$^{2+}$-free Tyrode solution (in mmol/L): NaCl 116.0, KCl 5.4, NaHCO$_3$ 15, NaH$_2$PO$_4$ 1.4, MgSO$_4$ 1, glucose 15, Taurine 30, gassed with 95% O$_2$ plus 5% CO$_2$, pH was adjusted to 7.4 with HCL; (3) KB medium (in mmol/L): KOH 90, L-glutamic acid 70, Taurine 20, KCl 30, KH$_2$PO$_4$ 10, HEPES 10, D-glucose 10, EGTA 0.5, pH was adjusted to 7.3 with KOH; (4) Internal pipette solution for I_{to} current recording (in mmol/L): KCl 140, MgCl$_2$ 0.53, EGTA 10, HEPES 10, pH was adjusted to 7.3 with KOH; (5) External pipette solution for I_{in} current

*Corresponding author: Shan Zhao-Liang, Department of Cardiology, General Hospital of PLA, Beijing 100853, China; Tel: +86 10 55499210; Fax: +86 10 55499205; E-mail: shanzl301@sina.com

Received July 21, 2017; Accepted July 29, 2017; Published August 05, 2017

Citation: Xiang-Min S, Tian-De L, Yu-Tang W, Ting-Shu Y, Zhao-Liang S (2017) Effect of Exogenous Phosphocreatine on I_{to}, I_{Na}, and $I_{\text{Ca,L}}$ in Ischemic Ventricular Myocytes of Rat. J Pharma Reports 2: 130.

Copyright: © 2017 Xiang-Min S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Effect of PCr with different concentration on Ito, INa and ICa,L in ischemic ventricular myocytes of rat.

Tyrode solution was gassed with 95% O2+5% CO2; other groups gassed with 95% N2+5% CO2. 10 min later, peak Ito, INa and ICa,L current were recorded in every group and expressed by current density. Currents amplitudes were calculated as difference between peak inward and steady-state currents. To get rid of the effect of capacitance on the peak amplitude, current density was compared between different groups. The Ito current was evoked by 250 ms step depolarization between -30 mV and +70 mV with a 10 mV increment from a holding potential of -40 mV, stimulation frequency 0.5 Hz. The INa current was evoked by 60 ms step depolarization between -90 mV and +60 mV with a 10 mV increment from a holding potential of -40 mV. Current-voltage relationship (I-V) curves were generated by applying a series depolarizing pulse from a holding potential to different membrane potential with a 10 mV increment.

During the process of experiment, PO2 and SO2 of perfusion solution were measured by blood gas analyzer (Nova biomedical USA), which indicated PO2>60 mm Hg and SO2>90% in Tyrode solution, as well as PO2<60 mm Hg and SO2<90% in simulated ischemic solution. The osmolality of perfusion solution was monitored (JC216-8P, Beijing) and varied between 290-320 mOsm.

Data Analysis

Statistical analysis was performed by SPSS 12.0 (Beijing Stats Data Mining Co. Ltd, Beijing, China). One-Way Analysis Of Variance (ANOVA) was adopted to test the difference of all groups, and Dunnett (double side) test was used in the comparisons among groups. All results were expressed as mean ± SE, P<0.05 was considered statistical significant.

Results

Characteristics of Ito, INa and ICa,L current and steady-state current-voltage relation

High amplitude outward (Ito) and inward (INa) (ICa,L) current was recorded in Tyrode solution group which presented quick activation and inactivation process, as well as voltage-dependent character (Figures 1-5). Ito activated at -30 mV and reached its peak at 70 mV. INa activated at -50 mV and reached its peak at -30 mV. Threshold for ICa,L activation was around -25~30 mV, maximum activation was attained at about -10~+10 mV, the course of activation and inactivation was slow (Figure 6). Compared with Tyrode solution, peak Ito, INa and ICa,L current in cells superfused with simulated ischemic solution remarkably inhibited (p<0.05) (Table 1).

Effect of PCr with different concentration on Ito, INa and ICa,L in the presence of ischemia

In relation to elevated PCr concentration in simulated ischemic solution, peak Ito, INa and ICa,L current and density gradually improved. Compared with cells superfused with simple simulated ischemic solution, for ischemic solution with PCr of 5, 10, 20, 30 mmol/L, peak Ito current density increased by 79.8%, 149.6%, 174.4%, 183.7% respectively; peak INa current density improved by 121.0%, 251.0%, 207.1%, 189.0% respectively, peak ICa,L current density improved by 138.4%, 200%, 219.2%, 226.9% respectively. There were statistical significance among PCr of 10 and 0, 5 mmol/L for Ito, INa and ICa,L, no significant difference were found among10, 20 and 30 mmol/L for Ito and ICa,L (p>0.05). Compared with PCr of 10 mmol/L, peak Ito current and density decreased in PCr of 20 and 30 mmol/L (p<0.05).
Coronary Heart Disease (CHD) and ischemic cardiomyopathy are prevalent in the world, subsequent heart failure and potential malignant ventricular arrhythmia are life threatening, although Implantable Cardioverter/Defibrillator (ICD) [17] or Cardiac Resynchronization Therapy (CRT) [18] can decrease mortality, the high cost and device-related complication prevent them from being available to majority of patients, meanwhile, some Antiarrhythmia Drugs (AAD) have potential proarrhythmic effects and been restricted. Pharmacological interventions are still key approach in the treatment of heart failure.

The result of this study demonstrated that exogenous PCr could partly restore the inhibited ion currents of ventricular cells in the setting of ischemia, even the concentration of PCr was not linearly correlated with the increase of Ito, INa, and Ica,L current, the significant improvement still could be observed in lower PCr concentration group compared with that of simple ischemia solution. It is well known that ion channel disturbance exerts great effect in impaired cardiac contractility and arrhythmia formation, so we deduced that ion current increase contributed to the clinical improvement for CHD patients receiving PCr treatment.

\(I_\text{to} \) is the key outward potassium current in early stage of action potential with character of rapid voltage-dependent activation and inactivation [19], it has been proved that inhibition of \(I_\text{to} \) in ischemia would more significantly prolong the Effective Refractory Period (ERP) of Mid-Cardium Cells (M Cells) than that of endocardial and epicardial.
cells, consequently amplifying Transmural Repolarization Dispersion (TRD) [20], which could be one of the underlying mechanism of arrhythmia. \(I_{\text{Na}} \) is responsible for 0 phase of action potential; therefore, influencing conduction velocity between ventricular cells, which exhibits rapid activation and inactivation pattern similar to that of \(I_{\text{Na}} \). Many studies demonstrated that \(I_{\text{Na}} \) could be remarkably inhibited in the presence of ischemia, leading to impaired intercellular conduction and facilitating reentry formation, which contribute to development of malignant arrhythmia [21]. \(I_{\text{Ca,L}} \) plays an important role in initiating myocardial contraction, ischemia related \(I_{\text{Ca,L}} \) inhibition closely correlated with extent of heart failure [22]. It was clear that intracellular ATP shortage gave rise to \(I_{\text{to}} \), \(I_{\text{Na}} \), and \(I_{\text{Ca,L}} \) inhibition due to ischemia, therefore increasing intracellular ATP synthesis could probably reverse impaired current. It has been reported that \(I_{\text{KATP}} \) could augment therefore increasing intracellular ATP synthesis could probably reverse impaired current. It has been reported that \(I_{\text{KATP}} \) could augment.

A variety of studies demonstrated that exogenous PCr supplementation could improve the function of heart muscle. PCr is known as the fundamental substrate for ATP synthesis, therefore supplement of exogenous PCr could significantly improve its current and current density similar to \(I_{\text{to}} \) and \(I_{\text{Ca,L}} \), and maintain the substrate of ATP [24-26], this function may reach a plateau when the concentration exceed 10 mmol/L [27], which could be a effective and feasible way to improve intercellular ATP substrate for ATP synthesis, therefore supplement of exogenous PCr combined with thrombolysis therapy could significantly reduce fatal arrhythmia within 6 hours in acute myocardial infarction.

Our study showed that the concentration of exogenous PCr did not lineally correlate with current improvement, PCr concentration ranging from 0-10 mmol/L significantly improved peak current and current density, as concentration greater than 10 mmol/L, PCr displayed minor improvement on \(I_{\text{to}} \) and \(I_{\text{Ca,L}} \) current, there were no statistical difference among simulated ischemic solution containing PCr of 10, 20, 30 mmol/L. This result suggested exogenous PCr could promote ATP synthesis via another pathway rather than simple decomposition of ATP, finally the net intercellular metabolic result was expressed as PCr→Cr+Pi, the level of PCr dramatically decreased with the accumulation of ADP during ischemia, leading to impaired current. It has been reported that \(I_{\text{KATP}} \) could augment therefore increasing intracellular ATP synthesis could probably reverse impaired current. It has been reported that \(I_{\text{KATP}} \) could augment.

<table>
<thead>
<tr>
<th>Solution</th>
<th>Peak current (PA)</th>
<th>Peak current density (PA/PF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyrode</td>
<td>3668.4 ± 444.3</td>
<td>53.9 ± 6.5</td>
</tr>
<tr>
<td>SI</td>
<td>8360.8 ± 628.4</td>
<td>119.4 ± 8.9</td>
</tr>
<tr>
<td>SI+5 mmol/LPCr</td>
<td>955.4 ± 113.2</td>
<td>13.4 ± 1.4</td>
</tr>
<tr>
<td>SI+10 mmol/LPCr</td>
<td>877.1 ± 232.3</td>
<td>12.9 ± 3.4</td>
</tr>
<tr>
<td>SI+20 mmol/LPCr</td>
<td>1734.3 ± 211.8</td>
<td>23.7 ± 3.0</td>
</tr>
<tr>
<td>SI+30 mmol/LPCr</td>
<td>184.6 ± 47.8</td>
<td>2.6 ± 0.7</td>
</tr>
<tr>
<td>SI+5 mmol/LPCr</td>
<td>1574.6 ± 354.2</td>
<td>23.2 ± 5.2</td>
</tr>
<tr>
<td>SI+10 mmol/LPCr</td>
<td>3523.5 ± 384.2</td>
<td>52.4 ± 5.6</td>
</tr>
<tr>
<td>SI+20 mmol/LPCr</td>
<td>398.1 ± 83.3</td>
<td>6.2 ± 0.9</td>
</tr>
<tr>
<td>SI+30 mmol/LPCr</td>
<td>2187.5 ± 3075.3</td>
<td>32.2 ± 5.6</td>
</tr>
<tr>
<td>SI+5 mmol/LPCr</td>
<td>5803.7 ± 433.5</td>
<td>83.2 ± 6.4</td>
</tr>
<tr>
<td>SI+10 mmol/LPCr</td>
<td>560.7 ± 73.4</td>
<td>7.8 ± 1.1</td>
</tr>
<tr>
<td>SI+20 mmol/LPCr</td>
<td>2407.8 ± 355.8</td>
<td>35.4 ± 5.2</td>
</tr>
<tr>
<td>SI+30 mmol/LPCr</td>
<td>5112.4 ± 461.7</td>
<td>72.8 ± 6.6</td>
</tr>
<tr>
<td>SI+5 mmol/LPCr</td>
<td>588.4 ± 70.5</td>
<td>8.3 ± 1.0</td>
</tr>
<tr>
<td>SI+10 mmol/LPCr</td>
<td>2486.3 ± 386.3</td>
<td>36.6 ± 5.7</td>
</tr>
<tr>
<td>SI+20 mmol/LPCr</td>
<td>4835.4 ± 396.4</td>
<td>68.5 ± 5.7</td>
</tr>
<tr>
<td>SI+30 mmol/LPCr</td>
<td>605.8 ± 81.5</td>
<td>8.5 ± 1.3</td>
</tr>
</tbody>
</table>

Table 1: Peak \(I_{\text{to}} \), \(I_{\text{Na}} \), and \(I_{\text{Ca,L}} \) current and density in rat ventricular myocytes, super fused with different solution \((X ± S; n=8) \). \(\Delta p<0.05 \) vs SI; \(* p>0.05 \) vs SI +10m mol/L PCr; 6p<0.05 vs SI+10m mol/L PCr.

Some studies confirmed that intercellular ATP level rapidly dropped with the accumulation of ADP during ischemia, as a normal physical response with the purpose of maintaining ATP level, ATP synthesis was initiated by means of Lomman reaction employing substrate of ADP and PCr (ADP+PCr→ATP+Cr), which was closely correlated with decomposition of ATP, finally the net intercellular metabolic result was expressed as PCr→Cr+Pi, the level of PCr dramatically decreased [24]. In our experiment, supplement of different concentration of exogenous PCr exerted its remarkable effect on increasing \(I_{\text{to}} \), \(I_{\text{Na}} \), and \(I_{\text{Ca,L}} \) peak current and current density, PCr is known as the fundamental substrate for ATP synthesis, therefore supplement of exogenous PCr could be a effective and feasible way to improve intercellular ATP content under the condition of ischemia, Conway [25] demonstrated that PCr marked with 14C, 97P could readily penetrate membrane of myocytes in ischemia, meanwhile, Perepech [9] suggested that PCr or PCr combined with thrombolysis therapy could significantly reduce fatal arrhythmia within 6 hours in acute myocardial infarction.

In terms of \(I_{\text{Na}} \) current, PCr at concentration of 0-10 mmol/L could significantly improve its current and current density similar to \(I_{\text{to}} \) and \(I_{\text{Ca,L}} \), however, as concentration greater than 10 mmol/L, there was a trend of...
current decrease, and statistical significance could be found among 10, 20 and 30 mmol/L. The underlying mechanism of this phenomenon could be attributed to inhibitory effect of higher concentration of PCr on I_{Na}.

previous study revealed that PCr could exert its effect similar to class I antiarrhythmia drugs [29]. This character supported that 10 mmol/L could be the best therapeutic concentration for ischemia heart disease.

References

