Comparative in-vitro Intrinsic Clearance of Imipramine in Multiple Species Liver Microsomes: Human, Rat, Mouse and Dog

Jitendra Kumar Singh1*, Anant Solanki2 and Vikas S. Shirsath2

1In vitro Pharmacology Laboratory, Gujarat, India

Abstract

Imipramine is a renowned tricyclic anti-depressant molecule. It is known to be highly potent and efficient as compared to any other antidepressants available. There are numerous literature reports which elucidate the metabolic pathways of Imipramine. There are also various reports showing the effect of substrate and time on metabolism of Imipramine. Most of the analytical methods used in these studies were HPLC and or LC-MS. These studies have also been extended to identification of specific isoforms of cytochrome P450 family responsible for the metabolism of Imipramine as is outlined. Further, LC-MS based studies have also been reported on the metabolism of Imipramine in in-vitro systems including human liver microsomes and its extrapolation on human oral bioavailability data. However, till date, there has been no published report on the systematic metabolic stability of this molecule in pooled mouse and dog liver microsomes. The present study was undertaken with the aim to understand the metabolic stability of imipramine in liver microsomes of different species including human, wistar rat, CD1 mouse and male beagle dog. We have also attempted to outline the differences between the metabolic stability in these four species. The reaction samples were scanned for specific m/z values corresponding to reported metabolites, which in turn confirms microsomal metabolism.

Keywords: Metabolic stability; Human Liver Microsomes (HLM); Rat Liver Microsomes (RLM); Mouse Liver Microsomes (MLM); Dog Liver Microsomes (DLM)

Introduction

Imipramine, a prototype of the tricyclic antidepressant class, is one of the most effective molecules available for the treatment of depression. Its main mechanism of action is inhibition of biogenic amine transporters. Because of its unsurpassed effects, it is considered as “Gold standard” for assessing novel antidepressant molecules. Till now, there are also various reports showing the effect of substrate and time on metabolism of Imipramine. Most of the analytical methods used in these studies were HPLC and or LC-MS [1]. In case of in-vivo and in-vitro studies, researchers have mainly contributed on outlining metabolism of imipramine. In the literature, various phase I and phase II metabolites have been reported [2]. Among the phase I metabolites, the major metabolites are desipramine, 2-hydroxy imipramine, 10-hydroxy imipramine, N-oxide derivative of imipramine. The phase II metabolites mainly include glucuronide conjugates [3]. Metabolism studies were initially started in human liver microsomes, which were then extended to rat liver microsomes [4] and mouse liver microsomes [5]. Numerous reports have elucidated the structures of major metabolites and simultaneously rate of formation of those metabolites in different species [6].

Present study aims to address the metabolic stability of imipramine as determined using the in-vitro systems. Since there are no reports about the direct comparison of metabolic stability of Imipramine in various species, the present study was planned to generate the hitherto unreported comparison data of the interspecies variations with regards to the metabolic stability data of imipramine. The present study, thus, evaluates the metabolic stability of Imipramine in different biological systems and establishes the metabolic capacity of various liver microsomes [7,8].

Materials and methods

Chemicals

Imipramine hydrochloride, (3-10, 11-dihydro-5H-dibenzo [b,f] azepin-5-yl)-N,N-dimethylpropan-1-amine) was purchased from Sigma Aldrich (St. Louis, MO). Pooled human liver microsomes (HLMs), pooled wistar rat liver microsomes (RLMs), pooled CD1 mouse liver microsomes (MLMs) and pooled male beagle dog liver microsomes (DLMs) were procured from BD Biosciences (Woburn, MA). Phosphate buffer used was of analytical grade, β-Nicotinamide adenine dinucleotide phosphate reduced tetrasodium salt (NADPH) was purchased from Sigma-Aldrich (St. Louis, MO). HPLC grade water was procured from Milli-Q water system (Millipore, USA). All other chemicals used were of analytical grade and proven purity.

Equipments

Analysis was performed on Agilent 1100 system having quaternary pump system, degasser, column oven and diode array detector. Software for controlling the system was EZChrom Elite™. Standard stock solutions were made in Corning 96 well plate. Multichannel pipettes and single channel pipettes were of Eppendorf. Eppendorf Centrifuge 5810R was used for centrifugation of the samples. Metabolites were analyzed on Shimadzu LC-MS 2010 EV comprising of binary pump, degasser, column oven, diode array detector and controlled by LCMS solution (Version 3) (Shimadzu, Japan). HPLC and LC-MS analysis was done on Waters XBridge C18 Column, 5 µm, 4.6 x 250 mm (Waters, MA). Vortex Genie 2 (Scientific Industries, NY, USA) was used for quenching the reaction after adding chilled Acetonitrile (ACN).

*Corresponding author: Jitendra Kumar Singh, In vitro Pharmacology Laboratory, Gujarat, India, Tel: +91-2717656415; Fax: +91-2717250262; E-mail: jitendra@o2h.com

Received April 17, 2012; Accepted May 29, 2012; Published May 31, 2012

Copyright: © 2012 Singh JK, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Experimental

HPLC method development

An HPLC method was developed using ACN and 0.1% Trifluoroacetic acid (TFA) in water with a flow rate of 1 ml/min. Gradient mode was optimized to elute out soluble proteins at early stage and allowing parent molecule as well as its metabolites to separate at a fair resolution. This method was then checked for linearity using HLM as blank protein. Finally optimized method is shown in Table 1. Chromatograms were scanned at 215 nm for presence of imipramine.

Selectivity and specificity

For selectivity and specificity, six different batches of drug-free liver microsomes of different species (without analyte) were analyzed for the exclusion of any endogenous co-eluting interference at the peak region of analyte.

Linearity of method

A protocol was developed and optimized for estimating extraction efficiency of the method using HLM as model protein. As per the protocol, stock solutions of imipramine were prepared from 40 nm to 0.055 mm by serial dilution using DMSO as a diluent. The reaction was then started in microcentrifuge tubes with 485.75 µl of pre-warmed phosphate buffer and mixing it with 1.25 µl of respective stock solutions individually (so as to maintain 0.25% DMSO as final concentration in the assay). The solution was warmed at 37°C for 5 min and then 13 µl of liver Microsomes (0.5 mg/ml protein concentration) was added. Reaction was quenched by addition of 300 µl of chilled ACN and vortexed to precipitate the proteins. The solution was then centrifuged at 9000 rpm for 15 min to sediment the precipitates. Supernatant was taken in HPLC vials and analysis was performed using 20 µl as injection volume. The analysis was done in triplicate.

Areas of the peaks were plotted against the respective concentrations and linearity of the method was established as per the data shown in Table 2. The linearity is also shown graphically in Figure 1.

Precision and accuracy

The precision and accuracy of the method were assessed by performing replicate analyses of samples at four concentration levels (100 µm, 11.11 µm, 1.23 µm and 0.13 µm). The inter-day (n = 5) and intra-day (n = 3) precisions were determined at three levels of QC.

For the determination of matrix effect and recovery, first blank samples and the standard solutions were obtained and recovery was calculated using the following equation:

\[
\text{% recovery} = \frac{\text{peak area of extracted sample}}{\text{peak area of standard solution}} \times 100
\]

Mass parameter	Value
Acquisition Mode | ScanSIM
Event time | 1 Sec
Detector voltage | 1.5 Kv
Interface | ESI
Polarity | Positive
Interface Temperature | 250 °C
CDL Temperature | 250 °C
Nebulizing gas flow | 1.5 L/min
Heat block | 200 °C
Acquisition time | 500 mSec

Table 3: Optimized Mass parameters.

<table>
<thead>
<tr>
<th>Experimental Conc. (µM)</th>
<th>Area (Mean ± S.D.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>99.32 ± 1.59</td>
</tr>
<tr>
<td>11.11</td>
<td>11.93 ± 0.30</td>
</tr>
<tr>
<td>1.23</td>
<td>1.30 ± 0.08</td>
</tr>
<tr>
<td>0.13</td>
<td>0.13 ± 0.01</td>
</tr>
</tbody>
</table>

Intra-day Data (n=3)

<table>
<thead>
<tr>
<th>Experimental Conc. (µM)</th>
<th>Area (Mean ± S.D.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>99.30 ± 1.26</td>
</tr>
<tr>
<td>11.11</td>
<td>11.72 ± 0.35</td>
</tr>
<tr>
<td>1.23</td>
<td>1.22 ± 0.12</td>
</tr>
<tr>
<td>0.13</td>
<td>0.12 ± 0.01</td>
</tr>
</tbody>
</table>

Inter-day Data (n=5)

<table>
<thead>
<tr>
<th>Experimental Conc. (µM)</th>
<th>Area (Mean ± S.D.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>99.30 ± 1.26</td>
</tr>
<tr>
<td>11.11</td>
<td>11.72 ± 0.35</td>
</tr>
<tr>
<td>1.23</td>
<td>1.22 ± 0.12</td>
</tr>
<tr>
<td>0.13</td>
<td>0.12 ± 0.01</td>
</tr>
</tbody>
</table>

Table 4: Precision and accuracy data for Imipramine samples.

Table 2: Calibration curve (n=3), Average of all area is taken into consideration.

Table 3: Optimized HPLC method for assessing imipramine in in vitro samples.

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>0.1% TFA in water</th>
<th>ACN</th>
<th>Mode</th>
<th>Concentration (µM)</th>
<th>Area (Mean ± S.D.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.0 → 7.0</td>
<td>70 → 10</td>
<td>30 → 90</td>
<td>Linear gradient</td>
<td>100</td>
<td>12519123 ± 0.45</td>
</tr>
<tr>
<td>7.0 → 10.0</td>
<td>10 → 0</td>
<td>90 → 100</td>
<td>Linear gradient</td>
<td>33.33</td>
<td>4209220 ± 0.03</td>
</tr>
<tr>
<td>10.0 → 13.0</td>
<td>0</td>
<td>100</td>
<td>Isocratic</td>
<td>11.11</td>
<td>1403757 ± 0.06</td>
</tr>
<tr>
<td>13.0 → 13.01</td>
<td>0 → 70</td>
<td>100 → 30</td>
<td>Sharp gradient</td>
<td>3.7</td>
<td>463231 ± 0.08</td>
</tr>
<tr>
<td>13.01 → 17.00</td>
<td>70</td>
<td>30</td>
<td>Reequilibrium</td>
<td>1.23</td>
<td>149637 ± 0.29</td>
</tr>
<tr>
<td>0.13</td>
<td>17348 ± 1.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Optimized HPLC method for assessing imipramine in in vitro samples.
Figure 2: Representative HPLC chromatogram of imipramine.

Figure 3: Metabolite generation from parent molecule of Imipramine with respective enzymes. (FMO-Flavin containing Monoxygenases).
Meanwhile, the matrix effect was determined (n=6) by comparing the results of real samples and processed samples at 0.13 µm level. The recovery and the recovery efficiency were discussed under the results.

In vitro studies

Same protocol was followed for in-vitro metabolic study. For reaction samples, 50 µl of 10 mM NADPH was added with 435.75 µl phosphate buffer and for the control samples NADPH was replaced with 50 µl of phosphate buffer in control samples. The microcentrifuge tubes were kept in shaking water bath at 300 rpm. The pre-defined time points (i.e. at 0 min, 15 min, 30 min and 60 min), the samples were withdrawn and quenched by addition of ACN followed by vigorous vortexing [9]. Same procedure was followed for control samples and analysis was done as per method mentioned earlier.

Area of imipramine was plotted against time to assess amount of drug remaining in bioanalytical samples generated. All the samples thus generated were preserved for 60 min (-20°C) and were utilized for LC-MS study in order to identify the metabolites reported in literature. The known mass fragments of metabolites were given for Selective Ion Monitoring (SIM) mode, i.e. m/z of 280 for imipramine, 266 for desimipramine, 252 for didesmethylimipramine, and 296 for 2-and10-hydroxyl imipramine as well as for imipramine N-Oxide. The peak area of imipramine was plotted against time points to assess amount of drug remaining.

Metabolic stability study

All the samples generated during metabolic stability study were directly utilized for LC-MS study in order to identify the metabolites reported in literature. The known mass fragments of metabolites were given for Selective Ion Monitoring (SIM) mode, i.e. m/z of 280 for imipramine, 266 for desimipramine, 252 for didesmethylimipramine, and 296 for 2-and10-hydroxyl imipramine as well as for imipramine N-Oxide. Optimized mass parameters are reported in Table 3.

Results

HPLC method development

Initially method was started with high amount of aqueous phase in order to elute matrix components and then gradient phase was given to elute the compound of interest as well as its metabolites. A representative chromatogram is Figure 2.

Linearity of the method

After establishing elution pattern of the drug, different concentrations of imipramine were injected and analyzed on HPLC system and integrated accordingly. Then the area was plotted against final effective concentration range of 100 µm to 0.138 µm. Regression equation was calculated on basis of graph and is tabulated Table 2. Lower limit of quantification (LLOQ) of imipramine was found to be 0.1 µm for this method.

Accuracy and precision

Selected concentrations were back calculated using the calibration curve equation and result is represented in Table 4. All the samples showed <15% variability which allows them to fall in acceptance criteria.

Recovery and matrix effect

The experimental recovery was found to be more than 95%. Additionally, the results also indicated that there was no matrix effect, meaning, no interference on the quantification of analytes from the matrix, even at LLOQ Figure 3.

In vitro studies

All the samples generated during metabolic stability study were analyzed as per aforementioned method. Peak area at 0 min sample was considered as 100% of imipramine present in the sample. Reduction in area of peak of interest was observed with subsequent time points. Based on area values, % drug remaining at each time point was calculated and plotted graphically. Representation of the data is made in Figure 4. It is evident from the Figure 4 that the rate of metabolism of imipramine is different in all the species under consideration. Maximum metabolism was observed in wistar rat (RLM) which was followed by CD 1 mouse and CD 1 mouse showed less than 15% variability which allows them to fall in acceptance criteria.

Intrinsic Clearance of Imipramine in Multiple Species Liver Microsomes:

Moreover, the matrix effect was determined (n=6) by comparing response of real samples and processed samples at 0.13 µm level. The extraction efficiency and the recovery are discussed under the results.

- **Human**: Half life 65.31 ± 2.0, Intrinsic Clearance 21.22 ± 0.7
- **Rat**: Half life 4.589 ± 0.6, Intrinsic Clearance 302.00 ± 3.1
- **Mouse**: Half life 11.04 ± 2.5, Intrinsic Clearance 125.53 ± 2.1
- **Dog**: Half life 46.98 ± 3.6, Intrinsic Clearance 29.49 ± 2.2

Accuracy and precision

Selected concentrations were back calculated using the calibration curve equation and result is represented in Table 4. All the samples showed <15% variability which allows them to fall in acceptance criteria.

Recovery and matrix effect

The experimental recovery was found to be more than 95%. Additionally, the results also indicated that there was no matrix effect, meaning, no interference on the quantification of analytes from the matrix, even at LLOQ Figure 3.

In vitro studies

All the samples generated during metabolic stability study were analyzed as per aforementioned method. Peak area at 0 min sample was considered as 100% of imipramine present in the sample. Reduction in area of peak of interest was observed with subsequent time points. Based on area values, % drug remaining at each time point was calculated and plotted graphically. Representation of the data is made in Figure 4. It is evident from the Figure 4 that the rate of metabolism of imipramine is different in all the species under consideration. Maximum metabolism was observed in wistar rat (RLM) which was followed by CD 1 mouse.

Intrinsic Clearance of Imipramine in Multiple Species Liver Microsomes:

Moreover, the matrix effect was determined (n=6) by comparing response of real samples and processed samples at 0.13 µm level. The extraction efficiency and the recovery are discussed under the results.

In vitro studies

Same protocol was followed for in-vitro metabolic study. For reaction samples, 50 µl of 10 mM NADPH was added with 435.75 µl phosphate buffer and for the control samples NADPH was replaced with 50 µl of phosphate buffer in control samples. The microcentrifuge tubes were kept in shaking water bath at 300 rpm. The pre-defined time points (i.e. at 0 min, 15 min, 30 min and 60 min), the samples were withdrawn and quenched by addition of ACN followed by vigorous vortexing [9]. Same procedure was followed for control samples and analysis was done as per method mentioned earlier.

Area of imipramine was plotted against time to assess amount of drug remaining in bioanalytical samples generated. All the samples thus generated were preserved for 60 min (-20°C) and were utilized for LC-MS study to identify and confirm the reported metabolites. Based on the presence of parent compound, intrinsic clearance was calculated using the following equation:

\[
\text{Intrinsic clearance} = \frac{0.693}{(\text{In vitro} \ t_{1/2} \times \text{microsomal protein concentration})}
\]

\[(\mu\text{m}in^{-1}\cdotmg^{-1})\]

Metabolite Identification

All the samples generated during the in-vitro study were directly utilized for LC-MS study in order to identify the metabolites reported in literature. The known mass fragments of metabolites were given for Selective Ion Monitoring (SIM) mode, i.e. m/z of 280 for imipramine, 266 for desimipramine, 252 for didesmethylimipramine, and 296 for 2-and10-hydroxyl imipramine as well as for imipramine N-Oxide. Optimized mass parameters are reported in Table 3.

Results

HPLC method development

Initially method was started with high amount of aqueous phase in order to elute matrix components and then gradient phase was given to elute the compound of interest as well as its metabolites. A representative chromatogram is Figure 2.
Figure 5: Extracted ion chromatogram for SIM mode and their respective mass chromatograms at specified retention time values.
The present data would be helpful for clinical research, if imipramine is taken up as a standard for checking the metabolic stability of any NCE.

Over and above, the present study also reports for the first time the metabolic stability of imipramine in CD1 MLM and male Beagle Dog DLM. Importance of developed method lies in its universal application in quantifying versatile matrices and the present study encompasses the evaluation of imipramine as well as all its known metabolites in all the four pooled liver microsomes using a single and simple protocol. This data projects imipramine as one of the standards for assessing activity of liver microsomes and the methodologies can be extended for assessing the metabolic stability of NCES.

References