Combined Sequenced-Based Model of the Drosophila Gap Gene Network

Dymova AV1, Kozlov KN1, Gursky VV2 and Samsonova MG1

1Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya St., 29, St. Petersburg, Russia
22Ioffe Institute, Politekhnicheskaya St., 26, St. Petersburg, Russia

Transcription is vital for normal functioning of all organisms, as it is the most significant regulation level of gene expression. An interest in detailed analysis of transcriptional regulation grows due to new large-scale data acquisition techniques. There is a large amount of experimental data available about the Drosophila segment determination system. The gap gene system implements the most upstream regulatory layer of the segmentation gene network. It receives inputs from long-range protein gradients encoded by maternal coordinate genes and establishes discrete territories of gene expression. In this process the gap gene cross-regulation plays important role. The formation of gap gene expression domains is a dynamic process: the domains do not form in one place, but instead in the posterior half of the embryo they shift anteriorly during cleavage cycle 14. Despite our expanding knowledge of the biochemistry of gene regulation, we lack a quantitative understanding of this process at a molecular level.

We applied the systems-level approach to study gap gene network in Drosophila. A combined sequence-based model of gap gene regulatory network controlling segment determination in the early Drosophila embryo was developed. We modified the recent model from [1] in three ways. First, we narrowed down the spatial domain of the model by considering only the trunk region of blastoderm from 35% to 92% of embryo length along the A-P axis. This allowed us to combine the data on protein concentration from FlyEx database [2] and on mRNA concentration from SuperFly database [3] in the fitting procedure. Second, we used the same BTM parameter and the same range for short range repression for all targets and TFs. Third, we allowed several activator molecules to contact BTM simultaneously.

The state variables of the model are the concentrations of mRNAs and proteins encoded by four gap genes hh, Kr, gt, and kni. The binding sites for 8 TF – the products of hh, Kr, gt, kni, bcd, ill, cad, and hkb genes in the potential regulatory region from 12Kbp upstream to 6Kbp downstream of each gene were predicted in [1] according to [4]. We modified thermodynamic approach originally proposed in [5]. The target gene expression at mRNA level is proportional to the concentration profiles from the SuperFly database (bottom row). Results are shown for time class 6 in cleavage cycle 14A.

Figure 1: Model output for a representative network as compared to protein concentration profiles from the FlyEx database (upper row) and mRNA concentration profiles from the SuperFly database (bottom row). Results are shown for time class 6 in cleavage cycle 14A.

where σ is a molecular configuration of the regulatory region for gene a and $Q^r(\sigma)$ is the Statistical weight of the interaction between TFs and bound basal transcriptional machinery (BTM), and $W^r(\sigma,i)$ is the statistical weight of configuration σ for nucleus-time coordinate (t,i), that depends on the concentration $V_i(t)$ of all TFs regulating gene a in nucleus i at time moment t. The system of differential equations considers both mRNA and protein synthesis. The equation for mRNA concentration $u(t)$ of target gene a in nucleus i included Production, diffusion and decay terms. The equation for protein concentration $v(t)$ described protein synthesis, diffusion and degradation.

$$\frac{du_a}{dt} = R^{u}_a E^u_a(t) + Du^u_a(n)\left([u^u_{a+1} - u^u_a] + [u^u_{a-1} - u^u_a]\right) - \lambda^u_a u_a$$

$$\frac{dv_a}{dt} = R^{v}_a u^a(t - \tau^a) + Du^v_a(n)\left([v^v_{a+1} - v^v_a] + [v^v_{a-1} - v^v_a]\right) - \lambda^v_a v_a$$

where n is the cleavage cycle number, R^{u}_a and R^{v}_a are maximum synthesis rates, D^u_a and D^v_a are the diffusion coefficients, and λ^u_a and λ^v_a are decay rates for protein and mRNA of gene a. The parameter τ^a is the delay parameter. Where n is the cleavage cycle number, R^{u}_a and R^{v}_a are maximum synthesis rates, D^u_a and D^v_a are the diffusion coefficients, and λ^u_a and λ^v_a are decay rates for protein and mRNA of gene a. The parameter τ^a is the delay parameter.

Model fitting was carried out by differential evolution (DEEP) method [6] to minimize the combined objective function. This function is a sum of the residual sum of squared differences between the model output and data, weighted pattern generating potential and a penalty term, which limits a growth of regulatory weights. The weighted pattern generating potential was proposed in [7] to account not only for the magnitude of difference between model and data, but also for the direction of change.

Concentration profiles for mRNA and protein for 4 target genes – hh, Kr, gt and kni are presented in Figure 1 together with experimental observations from FlyEx and SuperFly used for fitting.

*Corresponding author: Dymova AV, Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya St., 29, St. Petersburg, Russia, Tel: +79523746882; E-mail: dymova.arina@mail.ru

Received July 24, 2015; Accepted November 23, 2015; Published November 30, 2015

Copyright: © 2015 Dymova AV, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
References

