Clinical Outcomes of Conversion Surgery from an External Fixator to an Iodine-Supported Titanium Alloy Plate

Hidenori Matsubara, Toshiharu Shirai, Koji Watanabe, Issei Nomura and Hiroyuki Tsuchiya*

Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, Japan

Abstract

Background: External fixators brought a revolution in orthopaedic surgical treatment after the invention of distraction osteogenesis, which enabled treatment of various difficult diseases. However, they had some drawbacks, such as pin-site infections, psychological pain, and refracture after removal. To overcome these problems, many efforts have been made by shortening of the period of wearing them. One of those methods is conversion to locking plate, which had high risk of infection. To reduce the risk of infection, we performed conversion surgery using iodine-supported titanium plate (We named it iPlates, developed at our department).

Questions/purposes: We therefore evaluated (1) Operation time, (2) whether bone union was achieved, (3) blood biochemistry, including thyroid hormone levels, (4) post-surgical complications.

Patients and Methods: We assessed 28 legs. There were 13 legs after deformity correction and limb lengthening, three legs with pseudarthrosis after bone fracture, two legs after bone transport, one leg after shortening distraction, and one leg after open fracture. The mean follow-up period was 24.5 months.

Results: Average operation time was 197 minutes. Bone union was achieved in all cases. Blood examinations did not find any abnormalities due to implant implantation, such as with thyroid hormones. One patient had superficial soft tissue infection treated with re-operation without removal of plate.

Conclusions: An iPlate can reduce complications compared to previous studies. Conversion surgery with iPlate could be a new path for the future of external fixation.

Keywords: Iodine-supported; Titanium plate; Conversion surgery; External fixator; Nonunion; Limb lengthening

Introduction

External fixators brought a revolution in orthopedic surgical treatment after the invention of distraction osteogenesis by Ilizarov GA in the 1950s [1]. Devices of external fixator continued to be developed thereafter, enabling treatment of various diseases which had been difficult to treat. These devices have been used for various conditions such as trauma, infection, limb lengthening, deformity correction, joint mobilization, and bone defect reconstruction [2-4]. In this way, external fixators are highly useful treatment devices which are indispensable in orthopedic surgical treatment at present. Recently, however, locking plate has been developing remarkably, and replacing treatment of external fixator.

What is the future of external fixation? When addressing this question, it is necessary to consider current issues with external fixators and treatment in which they are used. Issues include inconveniences such as pin-site infections, bulky external fixators, patients’ psychological pain, and re-fracture after removal [5,6]. In order to overcome these disadvantages, devices such as antibacterial pins and wires [7], extendable implants [8], and simpler software has been developed, and they are currently being applied in some clinical situations. Meanwhile, efforts have been made with the aim of indirectly overcoming such disadvantages, not by the above direct means, but by shortening the period of wearing external fixators as much as possible. One such indirect measure is a method which aims to shorten the period of wearing external fixators by stimulating bone formation through cells, proteins, scaffolds, and mechanical stimulation. Another method is shortening of the period of wearing external fixators through parallel use of internal fixation materials and conversion to internal fixation materials [9]. There have been several reports on surgery for conversion to intramedullary nails [10,11]; however, this method is difficult to be applied in cases with complex bone formation, such as in a condition after deformity correction, and issues in such cases have been reported in that intramedullary infection was caused, making treatment difficult [6]. Since locking plates started being used at the beginning of the 21st century, there have been several reports on surgery for conversion to plates with a concept of external fixation in the body. However, an external fixator removal site is connected to outside the body, and inserting internal fixation materials into the site raises concerns over infection risks; therefore, this method still has not been generally accepted as a therapy [12-14].

We were successful in creating an iodine-supported titanium alloy implant (iImplant), which has antibacterial action. Our department uses iImplants, and has been achieving good outcomes in clinical studies in patients with a high risk of infection and in those with a history of infection [15]. We have started using iImplants in performing surgery for converting external fixation materials, which have a high risk of...
Surgical complications. Levels at postoperative 1, 2, 4 week, 3 month, and 6 month, (4) postoperative infection, to internal fixation ones. The present report is on treatment outcomes of surgery converting from external fixators to iodine-supported titanium alloy plates.

We therefore evaluated (1) Operation time, (2) whether bone union was achieved, (3) blood biochemistry, including thyroid hormone levels at postoperative 1, 2, 4 week, 3 month, and 6 month, (4) postsurgical complications.

Patients and Methods

We retrospectively reviewed 27 cases with 28 limbs that underwent surgery at our hospital in the period from February 2009 to May 2012. There were eight femurs, 19 tibiae, and one ankle. The mean age was 35 years (11-82 years). Thirteen limbs were in cases where surgery was planned following deformity correction/ bone lengthening, seven limbs had pseudarthrosis following deformity correction/ bone lengthening, three limbs had pseudarthrosis following fracture, two legs after bone transport, 1 leg after shortening distraction, and one leg after open fracture. The external fixator used in all cases was a Taylor Spatial Frame (TSF). The period for wearing the external fixator before conversion surgery was a mean of 175 days (8-1175 days). Autologous bone graft was also performed in 11 limbs with pseudarthrosis and in one limb with a bone transport docking site. The mean follow-up period was 24.5 months (13 - 54 months).

Iodine support

Iodine support is a technology of forming an approximately 8µm-thick oxidized film on a titanium implant surface, on which multiple micropores with diameters of approximately 10 to 30 nm are created, and filled with iodine [14] (Figure 1). Iodine exists in the human body in an ionic form, and is non-toxic; it has a broad antibacterial spectrum, and does not give rise to resistant bacteria [16]. The sizes and lengths of plate and screws are obtained by the presurgical planning, and pre-manufactured implants are covered with iodine by iodine support technique prior to surgery.

Surgical method

Sufficient presurgical disinfection is carried out on devices, including external fixators. Spraying is used to disinfect external fixators. Subsequently, external fixators are separated from the surgical field as much as possible (Figure 2). Plates are fixed through micropores with diameters of approximately 10 to 30 nm are created, and filled with iodine [14] (Figure 1). Iodine exists in the human body in an ionic form, and is non-toxic; it has a broad antibacterial spectrum, and does not give rise to resistant bacteria [16]. The sizes and lengths of plate and screws are obtained by the presurgical planning, and pre-manufactured implants are covered with iodine by iodine support technique prior to surgery.

Blood chemistry examination

The levels of thyroid hormones in the blood, thyroid-stimulating hormone (TSH), free triiodothyronine (FT3) and free thyroxine (FT4) were examined to determine if iodine from the implant influenced physiological activities. Both examinations were conducted regularly for 1 year.

Results

Average operation time was 197 minutes (85-345 minutes). Bone union was achieved in all cases. Blood examinations did not find any abnormalities due to implant implantation, such as with thyroid hormones. No change in alignment was observed due to conversion. One patient had superficial soft tissue infection treated with re-operation without removal of plate.

Representative Cases

Case 1: A case of conversion following tibial lengthening

The patient was a 62-year-old male with diabetic. He suffered from left tibial/fibular proximal open fracture (Gustilo Type 3b) by agricultural tilling machine (Figure 3). Emergency surgery was performed on the same day; irrigation and debridement, K-wire pinning, shortening, fixation with a Hoffman external fixator and artificial dermal transplantation were performed. Thereafter, irrigation and debridement were performed two times due to infection. The patient was referred to our department three months after injury, when the infection was somewhat reduced. An approximately 6cm limb length discrepancy when the patient visited our hospital and a skin defect were observed on the lateral side at proximal tibia (Figure 4). In the first surgery, a TSF was employed from Hoffman external fixator, and osteotomy was performed on the diaphysis part for postsurgical limb lengthening. 6cm of post-operative limb lengthening was performed gradually to even length of the legs (Figure 5). Since the patient had strong discomfort due to external fixation, iPlate conversion surgery was performed five months after the first operation. The operation involved conversion to a locking plate with the abovementioned procedure.
method. No signs of infection were observed post-operatively, bone union was observed on X-ray approximately two months after the conversion, and at present, eight months after conversion surgery, the patient can walk on his own (Figure 6).

Case 2: A case of tibial pseudoarthrosis

The patient was an 18 year-old male who underwent chemotherapy and surgery (marginal excision + bone transport + allograft) for an osteosarcoma in the right proximal tibia at the age of 13 years. In postoperative 9 month, docking site pseudoarthrosis was observed, and autologous bone transplantation was performed. It was determined that bone union was achieved one year and four months following the operation, and external fixator was removed (Figure 7). However, since bone union was not achieved at the pseudoarthrosis site, and as gradually increasing instability was observed, plate conversion and autologous iliac bone graft was performed two years following the operation. Bone union at the pseudoarthrosis site was still not observed, the plate became exposed, there was tibial anteverision, and the lower limbs were shortened. In addition, fracture was observed in distal to the plate; therefore, plate was removed, and a TSF was installed. Deformity

![Figure 3](image1.png)

Figure 3: Case 1. (A) Proximal tibial fracture was observed on X-ray at the accident. (B) Emergency operation was performed with shortening, K-wire pinning, and fixation with Hoffmann external fixator at the same day as the accident.

![Figure 4](image2.png)

Figure 4: Case 1. (A) Approximately 6cm limb length discrepancy was observed at the first visit of our hospital. (B) Skin defect was observed on the lateral side of proximal tibia at the first visit of our hospital.

![Figure 5](image3.png)

Figure 5: Case 1. (A) TSF was applied and osteotomy was performed at the diaphysis of left tibia at the first operation. (B) 6cm limb lengthening was done and good lengthening callus formation was observed.

![Figure 6](image4.png)

Figure 6: Case 1. (A) Consolidation of lengthening callus was observed eight months after iPlate conversion. (B) There was no infectious sign on clinical photograph.

![Figure 7](image5.png)

Figure 7: Case 2. (A) Bone absorption was detected on X-ray and revealed osteosarcoma by open biopsy. (B) Marginal excision was done and TSF was applied for bone transport. (C) Callus formation was found at the bone transport site. (D) Docking of bone transport segment was completed. (E) External fixator was removed by the judgment that enough bone union was achieved.
correction and limb lengthening were gradually performed post-
operatively (Figure 8), the abovementioned methods were performed
at the time when good alignment was achieved, and iPlate conversion
and autologous iliac bone graft were performed (Figure 9). At present,
two years and two months after iPlate conversion, good bone union has
now been achieved, and the patient can now run (Figure 10).

Discussion

An external fixator is a highly useful medical device in orthopedic
treatment; however, surgeons and patients may avoid and dislike them
due to disadvantages and complications specific to them. However,
there are some cases in which only an external fixator can be used for
treatment, or in which an external fixator can make treatment easier. In
order for external fixators to further develop, taking into account their
future possibilities, it would be favorable to have a technology which
could decrease various complications in relation to such devices, and
which can shorten the period during which the patient has to wear one.
The longer the period during which a patient has to wear an external
fixator, the higher the risk of them suffering from complications
accompanying it. In other words, if it is possible to shorten the
period during which the patient has to wear an external fixator, it
will be possible to reduce the psychological and physical burden on
the patient, and also to reduce complications. Conversion to internal
fixation materials is one of the solutions for reducing complications.
Also, re-fracture following external fixator removal, which is a major
complication with external fixators [6], can be prevented through plate
conversion. Meanwhile, there is a report that states that this conversion
operation has a high risk of infection because of the pin insertion site
communicating with the outside the body [12].

There are some limitations to our study. First, it is a retrospective
study. Second, the study has small number of patients. Third, it is not
comparative study. Four, there is no functional and psychological
assessment.

In the present study, we used iImplants and performed conversion
to internal fixation materials from external fixators, which have a high
risk of infection, and bone union and good outcomes were achieved
without any cases of severe infection observed. It was considered
that the reason for such good outcomes being achieved was because
the iImplant, which has an antibacterial action, prevented bacterial
adhesion and growth, stopping a biofilm from being created, allowing
antibiotics to permeate into target sites. We considered that this
antibacterial effect is the same as that which can be achieved through
fixation using an external fixator, and that the iImplant fulfilled its role
as internal fixator.

At present, we considered the indication of this iPlate conversion
operation to be femoral cases, cases which are expected to wear
external fixators for a long period of time, and cases in which the patient
strongly wishes to remove an external fixator at an early stage.
In femoral cases, there is an extremely great impairment of ADL due to
wearing an external fixator on the femur. Moreover, in cases with limb
lengthening of long distance and those which are expected to wear an
external fixator for a long period of time due to prolonged healing time,
conversion operation together with bone graft is extremely useful.

Meanwhile, the most significant disadvantage of conversion
operations is considered to be the risk of infection. Further, the fact
that at least two operations are necessary, and the change in alignment accompanying conversion are also considered to be disadvantages [12,17-19]. Naturally, this type of operation should be indicated for cases where the potential advantages are a favorable trade-off relative to the requirement for multiple surgeries. Moreover, in regard to changes in alignment, we removed an external fixator after plate fixation, and it is less likely that an alignment change will occur intraoperatively. There is a report on an alignment change occurring post-operatively during follow-up observation [12]. Since a plate does not have equivalent fixation to that of ring-type external fixators, we provide careful post-operative instructions until the time when a certain degree of callus formation is observed at the limb lengthening part, deformity correction part, or the pseudarthrosis part, in order to prevent alignment change post-operatively.

There have been some reports on conversion operations after fracture damage control; however, the infection rate varies between 5% and 17% amongst reports. There are several cases which progressed to osteomyelitis [17-19]. Moreover, there are some reports on conversion operations following limb lengthening, in the same way as in the present case [9,12-14]; however, it is difficult to evaluate them due to their small number of cases. A report by Harbacheuski, with the largest number of cases, had seven limbs with alignment changes, two limbs with infections, and two limbs with plate breakage, with extremely high complication rates [12]. From amongst our 28 limb cases, one limb was observed to suffer from superficial soft tissue infection; however, no alignment change was observed, and it is considered that good outcomes were achieved. Also, considering the avoidance of complications which could have occurred if external fixators had been continuously worn without conversion, we believe that this operation has advantages which cannot be expressed with data.

When looking at the future of external fixators, one of the issues is reducing complications. In order to resolve this issue, a solution can be to use external fixators for dynamic treatment such as gradual mobilization operations and limb lengthening, followed by static fixation and maintenance with internal fixation materials. The iPlate which we used enables safe conversion operation to be performed, and we consider that it can show a new path for the future of external fixation.

We concluded that iodine-supported titanium alloy plates are extremely useful for conversion operations from external fixators with a high risk of infection, and we believe that their indication will expand going forwards.

References