Balloon Angioplasty of Subatretic Coarctation of the Aorta Using Progressive Larger Balloons

José Luiz Balthazar Jacob* and Dárcio Gitti de Faria

Department of Hemodynamic and Interventional Cardiology of the Instituto de Moléstias Cardiovasculares de São José do Rio Preto, São Paulo, Brazil

Abstract

We report a case of subatretic coarctation of the aorta with dilated ascending aorta in a three-year-old boy weighing 14 Kg. Surgical treatment was indicated, but it was refused. Balloon angioplasty of the coarctation was performed using progressive increase in the balloon diameter. The diameters of the balloons ranged from 2 to 10 mm, and the gradient decreased from 60 down to 12 mmHg. We conclude that the balloon angioplasty with careful progressive increase in the balloon diameter is safe in the treatment of subatretic coarctation of the aorta with good results.

Keywords: Balloon dilatation; Congenital disease of the aorta; Congenital heart disease

Introduction

Balloon dilatation for the treatment of patients with native or recurrent coarctation of the aorta is widely accepted [1]. But balloon dilatation in children less than two years of age is associated with vessel recoil and recurrence of the lesion [2]. Over distention of the coarctation can cause aortic wall injury [3,4]. Recently, stents have been used in older children or young adults to solve these complications [5]. We report a patient with native subatretic coarctation of aorta and important dilatation of the ascending aorta. Because the surgical treatment was refused by the parents, the patient was treated by balloon angioplasty using progressive larger diameter balloons until reaching a good result.

Case Report

A three-year-old boy was referred to our tertiary Cardiologic Center due to poor physical development and systemic arterial hypertension. On physical examination the weight was 14 Kg, and the blood pressure was 150/100 mmHg in the upper limbs. Radial pulse was strong and the femoral pulse was absent. Blood pressure in the inferior limbs was 80/60 mmHg. The first and second cardiac sounds were loud and a systolic murmur was audible in the left sternal line.

Electrocardiogram revealed left ventricular hypertrophy and the chest radiography showed normal cardiothoracic ratio with dilatation of the ascending aorta in frontal view. Color echodopplerangiography confirmed dilatation of the ascending aorta and severe coarctation, with normal volumes and ejection fraction of the left ventricle. The gradient across the coarctation was 55 mmHg. Due to aortic dilatation that suggested possible disease of the aortic wall, surgical treatment was indicated, but refused by the parents. Diseases of the aortic wall increase the risk of percutaneous procedure for treatment of aortic coarctation. Even the surgical risk is higher in these cases.

We performed cardiac catheterization by the right femoral artery approach. The blood pressure in the aorta below the coarctation was 95/60 mmHg. It was impossible to reach the ascending aorta and the angiography performed below the coarctation showed flow absence to the aorta above the coarctation, suggesting interruption of the aorta. Right brachial approach was attempted and the blood pressure in the ascending aorta was 155/90 mmHg. Angiographic study revealed subatretic coarctation with dilatation of the ascending aorta (23.5 mm of diameter). The left and right thoracic internal arteries were very dilated.

A Lehman 5F catheter was positioned near the subatretic coarctation and angiography by hand showed the coarctation diameter (Figure 1A). It was impossible to cross the coarctation using the Lehman catheter. A coronary angioplasty guide wire 0.014 inch through the Lehman catheter crossed the severe stenosis and reached the ascending aorta. On the guide wire 0.014 inch a 2 mm diameter coronary angioplasty balloon catheter was placed in the coarctation area and two inflations were made (Figure 2A). Another coronary angioplasty catheter with 4 mm diameter was used and two more inflations were made (Figure 2B). Angiography showed increase of the flow across the coarctation. Balloon catheters with 6 mm, 8 mm (Figure 2C) and 10 mm of diameter (Figure 2D) were used sequentially and successful dilatation was obtained with good blood flow to the abdominal aorta (Figure 1B). The gradient across the coarctation decreased from 60 mmHg to 12 mmHg.

Echocardiographic study showed normal flow pattern in the abdominal aorta. The in-hospital evolution was uneventful and the patient was discharged two days after the procedure. In a one year follow-up, the patient showed normal blood pressure in the upper and lower limbs. The systolic and diastolic pressures were 110/70 mmHg, 90/60 mmHg. The weight was 15 Kg, and the systolic and diastolic pressures were 110/70 mmHg. The patient is asymptomatic and continues to grow well.

Figure 1: A) The subatretic coarctation was visible in frontal view. The diameter shown by angiography was 1.42 mm (arrow). B) After the balloon dilatation using progressive larger balloons the coarctation diameter increased to 7.62 mm (arrow).

*Corresponding author: José Luiz Balthazar Jacob, MD, PhD, Rua Castelão D’Água 3030, CEP 15015-210, São José do Rio Preto, São Paulo, Brazil, Tel: 55 17 32034010; Fax 55 17 32034000 R 239; E-mail: jljacob@cardiol.br; jbjacoblivros@hotmail.com

Received May 27, 2013; Accepted July 15, 2013; Published July 18, 2013


Copyright: © 2013 Balthazar Jacob JL, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
follow-up the blood pressure was 100/60 mmHg in the upper limbs and the gradient across the coarctation by echocardiographic study was 15 mmHg with normal flow pattern in the abdominal aorta.

Discussion

In a three-year-old boy, balloon angioplasty for the treatment of aortic coarctation is widely accepted. The chance of recurrence in children older than two years decrease and stent implantation is not performed in children less than 20 kg. In older children or young adults the subatretic coarctation is in general treated with covered stent implantation to avoid aortic wall injury or pseudoaneurysm formation. In our case the important dilatation of the ascending aorta which increased the risk of aneurysm or aortic wall injury caused by balloon angioplasty. For this reason surgical treatment was indicated, but it was refused by the parents. We decided to perform the balloon angioplasty with progressive increment in the balloon diameter up to 10 mm which was the diameter of the aorta near the left subclavian artery. This technique is used in some patients with subatretic coarctation, in which a two-stage approach is advocated. In these cases the balloon dilatation is followed by stent implantation after a few months or in the same procedure. Our patient had a good result. Despite of the important dilatation of the ascending aorta there were not any acute complications such as pseudoaneurysm in the dilated area, aortic wall injury or peripheral vascular complications. The in-hospital evolution was uneventful. The eccentric blood flow showed immediately after dilatation and the discordance of diameters of the aorta pre and postcoarctation increase the risk of recurrent coarctation or aneurysm formation during the follow-up. It is not unusual that the eccentric blood flow disappears with the growth of the child. The patient was followed every month and after one year his blood pressure was normal. Echocardiographic study was repeated during the follow-up and it did not show progressive dilatation of the ascending aorta, aneurysm formation or recurrence of the coarctation. In this case, despite of the good results after one year, a close follow-up is necessary because complications can occur years after the procedure.

Conclusion

We conclude that subatretic coarctation of the aorta in children less than 20 Kg, in whom the covered stent implantation is not an option and the surgery is refused, the treatment by balloon angioplasty using careful increment in the diameter of the balloons until reaching a good result is possible.

References