Bacteria and Obesity: The Proportion Makes the Difference

Katerina Kotzampassi1,*, Evangelos J Giamarellos-Bourboulis2 and George Stavrou1

14th Department of Internal Medicine, University of Athens Medical School, Greece
2Department of Surgery, Aristotle University of Thessaloniki, Thessaloniki, Greece

Abstract

Obesity is a major public health concern, caused by a combination of increased consumption of energy-dense foods and reduced physical activity, with contributions from host genetics, environment, and adipose tissue inflammation. In recent years, the gut microbiome has also been found to be implicated and augmented research in mice and humans has attributed to it both the manifestation and/or exacerbation of this major epidemic and vice versa.

At the experimental level, analysis of fecal samples revealed a potential link between obesity and alterations in the gut flora [drop in Bacteroidetes and increase in Firmicutes], the specific gut microbiome being associated with the obese phenotype. Conventionally raised mice were found to have over 40% more total body fat compared with those raised under germ-free conditions, while conventionalization of germ-free mice resulted in a significant increase in total body fat. Similarly, the sparse data in humans supports the fact that fat storage is favoured by the presence of the gut microbiota, through a multi-faceted mechanism.

Efforts to identify new therapeutic strategies to modulate gut microbiota would be of high priority for public health, and to date, probiotics and/or prebiotics seem to be the most effective tools.

Keywords: Obesity; Microbiome; Probiotics; Prebiotics; Obesity treatment

Introduction

Obesity is a major public health concern, threatening both the industrialized and the developing world, largely in parallel to the adoption of a “modern/western-type lifestyle”. It results from a long-term dysbalance between energy intake and expenditure, i.e., increased consumption of more energy-dense, nutrient-poor foods containing high levels of sugar and saturated fats in combination with reduced physical activity [1]. However, the mechanisms underlying obesity seem to be far from the long-held belief in caloric intake and lifestyle factors. Recent studies have suggested microbiota to be an environmental factor involved in the control of body weight and energy homeostasis. Experimental models using transgenic, knockout and gnotobiotic animals, as well as human studies, provide evidence of a crucial role for intestinal microbiota in energy harvest and consequently obesity. More precisely, they show a potential link between obesity and alterations in the gut flora [4,5], the specific gut microbiome being associated with the obese phenotype [5-10].

Obesity and Microbiota

Recent studies have suggested microbiota to be an environmental factor involved in the control of body weight and energy homeostasis. Experimental models using transgenic, knockout and gnotobiotic animals, as well as human studies, provide evidence of a crucial role for intestinal microbiota in energy harvest and consequently obesity. More precisely, they show a potential link between obesity and alterations in the gut flora [4,5], the specific gut microbiome being associated with the obese phenotype [5-10].

It is now well documented that the human gut microbiota [a total of up to 10 trillion cells], mostly Gram-positive and anaerobic [11], are unique to each individual, highly variable between persons, and remarkably stable after the first year of life [12,13]. Despite this individual uniqueness and the high diversity in humans, there is only a small number of microbial phyla that are numerically dominant [14-16]: Firmicutes and Bacteroidetes accounting for more than 90% [17-19].

New research reveals that obese animal and human subjects have alterations in the composition of the gut microbiota compared to their leaner counterparts [20]; a greater representation of Firmicutes and fewer Bacteroidetes, as well as reduced bacterial diversity as a total [4,5,21,22], the altered representation of bacterial genes being considered the cause affecting metabolic pathways [21].

In a challenge to identify more specific changes in the gut microbiota that may account for these metabolic effects, Ley et al. [5] studied genetically obese, leptin receptor–deficient (ob/ob) mice and found in the cecum biota a 50% reduction in the abundance of Bacteroidetes and a proportional increase in Firmicutes in relation to lean mice. Another researcher also found a higher proportion of Archaeamicrobes within the stools received from the cecum in genetically obese mice in comparison with their lean littermates [23], while diet-induced obesity in mice has also been associated with an increased proportion of Eubacteriumdolichum, belonging to the Firmicutes division [24].

Waldram et al. [22] studied a rat obesity model, characterizing gut microorganisms in parallel with metabolites. Their results broadly support patterns of greater Firmicutes/Bacteroidetes ratios, as observed in other animal studies. Furthermore, specific bacteria were found associated

*Corresponding author: Katerina Kotzampassi, MD, Department of Surgery, Aristotle University of Thessaloniki, Medical School, Thessaloniki 54006, Greece, E-mail: kakofte@yahoo.com

Received June 06, 2013; Accepted November 21, 2013; Published November 27, 2013


Copyright: © 2013 Kotzampassi K, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
with the obese phenotype (Halomonas and Sphingomonas), as were lower total bacteria counts and lower Bifidobacterial counts. On the other hand, conventionally raised mice had over 40% more total body fat compared with those raised under germ-free conditions, while conventionalization of germ-free mice via colonization with cumulatively derived distal microbial community resulted in a significant increase in total body fat [4].

The first study describing qualitative changes of the gut microbiota in obese human individuals over lean controls was published a few years ago [5,9]. They analyze the fecal gut microbiota over the course of 1 year in obese individuals participating in a weight loss programme, randomly allocated to either a fat-restricted or carbohydrate-restricted low-calorie diet. The Bacteroidetes and Firmicutes phyla were found to be the dominant bacteria in the microbiota, while bacterial flora showed remarkable intra-individual stability over time. At zero time-point, obese subjects had significantly fewer Bacteroidetes and more Firmicutes than lean control subjects. After weight loss, the relative proportion of Bacteroidetes increased, while Firmicutes decreased, a finding well correlated with the percentage of weight loss. Bacteroidetes constituted approximately 3% of the gut bacteria before diet therapy and approximately 15% after successful weight loss.

In another study on obese humans submitted to a dietary intervention of reduced carbohydrate intake and increased protein intake, Ducan et al. [25] found reductions in populations of Bifidobacterium, Roseburia spp. and Eubacterium rectale subgroups of clostridial cluster XIVa. Further support derived from other weight loss studies show marked and sustained changes in the microbial composition of the gut after weight-loss induced by diet restriction [26,27]. In line with these findings were those obtained from individuals subjected to weight-loss surgery [28-31]. Zhang et al. [28] showed Gamma-Proteobacteria and Verrucomicrobia were enriched after gastric bypass compared with that presenting in the stools of lean and obese controls, while Firmicutes were significantly decreased. In addition, the stomach chambers formed in RYGp surgery are colonized by bacteria to a greater extent than in the normal stomach [31].

The hypothesis of a more specific modulation of gut microbiota in obesity, far from that obtained at the phylum levels, is supported by several studies. Bifidobacterium spp. numbers were found higher in children who exhibited a normal weight from birth till the age of 7 years in relation to children who became overweight [32], and is it now well known that Bifidobacterium spp. presence is often associated with beneficial health effects [33-35]. More importantly, the authors [32] observed that the Staphylococcus aureus levels were lower in children who maintained a normal weight than in children who became overweight several years later, and thus proposed that the protection from obesity seen with Bifidobacteria may, in part, be due to its anti-inflammatory effects, whereas S. aureus may trigger low-grade inflammation [36], leading to the overweight status [37,38]. Furthermore, comparable results have been found between the faecal microbiota of obese and lean twins: while a core gut microbiome exists [39], in addition to the lower proportion of Bacteroidetes and the higher proportion of Actinobacteria associated with obesity [21].

What is the Role of Food Intake

One of the key and central questions is that of whether and how diet might affect the composition of the gut microbiome. In a very recent article Emeritus Professor Bengmark [1], well-known for his extensive studies on probiotics, summarizes the role of food as follows: “The great majority of ingredients in the industrially produced foods consumed in the West are absorbed in the upper part of small intestine and thus of limited benefit to the microbiota. Lack of proper nutrition for microbiota is a major factor under-pinning dysfunctional microbiota, dysbiosis, chronically elevated inflammation, and the production and leakage of endotoxins through the various tissue barriers. Furthermore, the over-consumption of insulinogetic foods and proteotoxins, such as advanced glycation and lipoxidation molecules, gluten and zea, and a reduced intake of fruit and vegetables, are key factors behind the commonly observed elevated inflammation and the endemic of obesity and chronic diseases, factors which are also likely to be detrimental to microbiota”. The fact that industrialized foods are absorbed in the upper part of the small intestine, in relation to the knowledge that Lactobacilli are predominantly present in the ileum and Bifidobacteria in the colon [40] would be a simplified explanation for Lactobacillus overgrowth and Bifidobacteria suppression in obese individuals.

On the other hand, the finding of increase in fat mass upon high fat diet feeding in conventionalized versus germ free animals, supports the fact that the fat storage is favoured by the presence of gut microbiota [4,7], and moreover, that carbohydrates in the diet may modulate the development of obesity upon colonization of the gut [41].

At experimental level, Hildebrandt et al. [42] focused on how a high-fat diet might affect the composition of the murine gut microbiome, even independently of obesity. When switching mice to a high-fat diet they found profound changes in the gut microbiome, including a decrease in Bacteroidetes and an increase in Firmicutes and Proteobacteria. However, the main strength of their study is that they clearly show the observed changes to be independent of obesity.

In an effort to ascertain to what extent gut microbiota is an important regulator of nutrient absorption in humans, Jumppertz et al. [40] investigated the changes in the feces of 12 lean and 9 obese individuals during diets that varied in caloric content [2400 compared with 3400 kcal/d]. They showed that an altered nutrient load induced rapid changes in the bacterial composition of the human gut microbiota. Moreover, these changes in the gut microbiota were directly associated with stool energy loss in lean individuals, such that a 20% increase in Firmicutes and a corresponding decrease in Bacteroidetes was associated with an increased energy harvest of about 150 kcal. They also showed that a high degree of overfeeding in lean subjects was associated with a greater fractional decrease in stool energy loss, which indicated that the degree of over-nutrition relative to individual weight-maintaining energy needs may have played a role in the determination of the efficiency of nutrient absorption, and may potentially explain the observation of clearer associations in lean compared with obese subjects. Thus, they suggest that the gut microbiota senses alterations in nutrient availability and subsequently modulates nutrient absorption, the difference in microbiota reflecting differences in calorie absorption. Moreover, previous studies on healthy subjects showed that about 5% of ingested calories were lost in stools [43], with those consuming high-fiber diets exhibiting a higher fecal energy loss than those consuming a low-fiber diet, although equivalent in energy content [44,45].

The change of the composition of the upper intestine in obesity for aerobic bacteria was also confirmed in a survey of 320 patients subject to upper GI tract endoscopy. Fluid was aspirated from the lumen of the third part of the duodenum and it was quantitatively cultured. The isolation of colonic type bacteria at counts greater than 105 cfu/ml was considered diagnostic of the Syndrome of Intestinal Bacterial Overgrowth [SIBO]. SIBO was present among 62 patients. When patients with SIBO were compared with the 258 non-SIBO patients regarding their baseline demographic characteristics, it was found that
the BMI of SIBO patients was significantly greater than of non-SIBO patients [mean 28.2 kg/m² vs 25.1 kg/m²]. As expected, the prevalence of type 2 diabetes mellitus was far greater among SIBO patients than among non-SIBO patients [25.5% vs 18.2%] [46].

Mechanisms involved in Fat Storage

From all the above described findings, it appears clear that gut microbiota is an important environmental factor that affects energy harvest from the diet and energy storage in the host [4], through a multiple-faceted mechanism regulating the host’s metabolism.

First of all, gut microbiota seem to promote fat storage by means of linking circulating triglycerides with suppression of the intestinal expression of an inhibitor of Lipoprotein Lipase [LPL] [4], the so called fasting-induced adipose factor [Fiaf]. This is member of the angioptoin-like family of proteins, expressed in differentiated gut epithelial cells, as well as in the liver and the adipose tissue [47], which is considered to be a mediator of microbial regulation of energy storage [4]. Further research on germ free and conventionalized, normal and Fiaf knockout mice has established its essential role for the microbiota-induced depression of triglycerides in adipocytes [4,10] by means of LPS activity. Gut microbiota-induced suppression of Fiaf leads to a higher LPL activity and as a consequence an increased cellular uptake of fatty acids and adipocyte triglyceride accumulation, i.e. greater fat storage [4]. It is likely that changes in gut microbial environment prompted by Western diets may function as an environmental factor that affects predisposition toward energy storage and obesity [4]. On the other hand, it would appear logical to try modulating gut flora towards increasing Fiaf expression and/or activity, action that would promote leanness.

A second pathway that influences host energy storage is related to energy extraction from undigested food components. Nutrients which escape the digestion, due to host’s limited capability of glycoside hydrolases to digest complex dietary plant polysaccharides, are fermented by gut microbes into monosaccharides and Short-Chain Fatty Acids [SCFAs], such as acetate, propionate and butyrate [11,48], representing an important energy source for the body. Normal colonic epithelia derive 60–70% of their energy supply from SCFA, particularly butyrate [49,50], while propionate is largely taken up by the liver for gluconeogenesis, lipogenesis and protein synthesis [51,52].

Changes in the relative abundance of the two dominant bacterial phyla, the Bacteroidetes and Firmicutes, found in obese mice and humans, are associated with differences in capacity for energy harvest [4,5]. The increase of microbiota phyla such as ‘obese gut microbiome’ with greater energy extraction efficiency resulted in less energy left over in feces and thus greater levels of short-chain fatty acids (SCFAs) in the cecum.

Schwartz et al. [53] found considerable differences in the stool SCFAs concentrations between lean and obese individuals; the mean total SCFA concentration in fecal samples of obese volunteers was more than 20% higher in total than in lean volunteers [P=0.024], the highest increase seen for propionate with 41% [P=0.002], followed by butyrate [28%, P=0.095]. In addition, this resulted in changes in the proportions of individual to total SCFA, the propionate proportion was thus higher in overweight [18.7%, P=0.019] and obese [18.3%, P=0.028] than in lean subjects [15.9%].

SCFAs may also act as signalling molecules, since propionate and acetate are known ligands for 2 G-Protein-Coupled Receptors [GPCRs], namely the Gpr41, and Gpr43 [54,55]. Studies have shown that conventionally raised Gpr41−/- mice or germ-free Gpr41−/- mice that have been colonised with Bacteroidete theaeotaomicroin and Methanobrevibacter smithii are significantly leaner than their wild-type siblings. These points to the fact that Gpr41 could regulate host energy balance through effects depending on the gut microbiota and its metabolic capacity [39]. Thus, manipulation of SCFA activation of GPCRs could, theoretically, serve as a therapeutic target, modulating efficiency of caloric extraction from a polysaccharide-rich diet.

In addition to the effect on energy harvest, the bacterial microbiota can directly, via afferent nerve terminals or indirectly, via signalling peptides, modulate gut motility, alter secretion of gut hormones, and modify both gut permeability and immune function. These alterations may additionally influence the host metabolism and pro-inflammatory state being present in obesity [56].

A 4-week high-fat diet in a mouse model appears to increase the proportion of circulating lipopolysaccharide [LPS] containing microbiota [38] and thus plasma LPS levels [metabolic endotoxemia] two- to three-fold. Thus, a high-fat diet is thought to modulate the composition of the gut bacteria [24,57-59] notably by reducing Bifidobacteria, leading to increase in gut permeability which allows a higher LPS plasma levels. On the other hand, greater levels of Bifidobacteria have been associated with reduced gut leakiness, allowing less LPS to translocate to the serum [60].

Cani et al. [4,59] have recently shown an increase of LPS levels, derived from colonic Gram-negative bacteria, such as the Bacteroidetes which, in association with and/or due to changes in intestinal microbiota composition [gram-negative/gram-positive ratio] seems to be a triggering factor in chronic systemic inflammation; an increased production of pro-inflammatory cytokines affects negatively glucose tolerance, and thus leads to insulin resistance and increase in body weight. More precisely, it is well known that LPS binding to TLR4 receptor triggers a downstream signaling cascade that encodes proinflammatory molecules. Shi et al. [61] have shown that nutritional fatty acids, whose circulating levels are often increased in obesity, activate TLR4 signaling in adipocytes and macrophages in a similar way, the chronic inflammatory state being associated with insulin resistance.

Additionally, when mice received a high-fat diet plus antibiotics, they are found to have decreased levels of endotoxin and decreased markers of inflammation, as well as reduced weight gain and improved glucose tolerance [59], a finding implying that LPS may link inflammation with the microbiota. Thus, the manipulation of the gut microbiota may provide a novel therapeutic treatment for obesity [62-64].

Another pathway of potential interaction between host and the microbiota involves the adenosine monophosphate-activated protein kinase [AMPK], a key enzyme that controls cellular energy status through stimulation of fatty acids beta-oxidation [7,10,65]. The gut microbiota were found to suppress AMPK-driven fatty acid oxidation in the liver and in skeletal muscle, while germ-free mice remain lean, despite high calorie intake, due to increased activity of AMPK levels both in the liver and skeletal muscle, which stimulate fatty acid and lead to decreased glycogen levels in the liver [7].

Finally, Stappenbeck et al. [66] suggested that gut microbiota conventionalization in mice results in a doubling of the density of capillaries in the villus epithelium of the small intestine, in an effort to promote intestinal monosaccharide absorption.

Future Perspectives

The ability to extract energy from every kind of food and to store it
as adipose tissue would be a beneficial attribute for our ancestors who had variable access to food the year-round. Nowadays, in our modern, developed world, where there is ready access to inexpensive, large-portion, readily available high-calorie foods, this “benefit” becomes a negative, with overweight and obesity representing major risk factors for a plethora of severe metabolic disorders, including dyslipidemia, steatosis, hypertension, insulin resistance and type 2 diabetes, cardiovascular diseases and inflammatory bowel diseases.

However, most obese individuals have been found unable to make voluntary, lifelong changes in diet and behaviour for weight management. Moreover, very recent laboratory and clinical research has documented that excessive fat accumulation is the consequence not only of positive energy balance and decreased physical activity affected by cultural and economic factors. Major progress has been made in identifying specific nutrition components that are both directly linked to the inflammatory state of the host and dramatically shift the assemblage of gut microbiota, whichever the order of priority [67].

As has already been analyzed, at the phyla level, Firmicute dominant, ‘obese’ microbiomes were found to contain more genes associated with lipid and carbohydrate metabolism and the breakdown of otherwise indigestible polysaccharides than Bacteroidetes dominant, the ‘lean’ microbiomes did [37]. Therefore, efforts to identify new therapeutic strategies allowing non-cognitive reduction of energy intake, energy absorption and storage would be of high priority for public health, the most prominent target being the reduction of the gut microbiota to a healthy state. What are the next logical steps? We should search for certain dietary or pharmacological interventions to manipulate specific gut microbial species [6,24,55,68].

Among the tools to modulate gut microbiota, probiotics and/or prebiotics appear to be the most important, although actual proof is still limited. The Food and Agriculture Organization of the United Nations and the World Health Organization [FAO/WHO] define probiotics as ‘live microorganisms that, when ingested in adequate quantities, exert a health benefit to the host’, by stimulating the growth of other microorganisms, modulating mucosal and systemic immunity, and improving the nutritional and microbial balance in the intestinal tract [69]. On the other hand, prebiotics are ‘non-digestible food ingredients that beneficially affect the host by selectively stimulating the growth and/or activity of one or a limited number of the host’s gut bacteria [70].

Various probiotic strains have already been evaluated as therapeutic in animal models of obesity, such as Bifidobacterium spp. [71,72], Lactobacillus paracasei [73] and Lactobacillus gasseri BNR17 [74]. In humans, although actual proof is still limited, the few human trials are encouraging and seem to be very promising with regard to the efficacy of pre- and/or probiotics as antiobesity agents [75-77]. The early modulation of gut microbiota with the probiotics Lactobacillus rhamnosus GG and Bifidobacterium lactis Bb12 was found to reduce the body mass index in young children, by restraining excessive weight gain during the first 10 years of life [78]. Sixty-two obese volunteers were randomized into Lactobacillus gasseri BNR17 or placebo for a 12-week period, at the end of which a slight reduction in body weight and a decrease of waist and hip circumeferences were noted in the BNR17 group, the non-significant difference being attributed to the short trial period [79]. The effect of the probiotic Lactobacillus gasseri SBT2055 (LG2055) was tested in 87 obese subjects, in a randomized, placebo controlled intervention which lasted 12 weeks. A significant decrease in body weight and body mass index as well as in visceral and subcutaneous fat was found, which may be linked to decreased fat absorption in relation to the control group [80].

Giving inulin-type fructo-oligosaccharides [FOS] as a supplement seems to stimulate the growth of Bifidobacterium spp., and in some cases, Lactobacillus spp., which is also administrated as probiotics [81-83], similarly, wheat arabinoxylan was found related to consistent increases in Bacteroidetes, Bifidobacteria and Roseburia [84]. It is of interest to mention that the amount of Bifidobacteria found at baseline [i.e. before intervention] seems to be strongly associated with the increase achieved after treatment, indicating that pre-existent gut microbiota composition enhances or possibly determines the response to the intervention [56]. Oligofructose supplementation [21 g daily] versus maltodextrin as placebo for a 12-week period in 48 healthy obese adults was found to promote weight loss and improve glucose regulation, through a modulation of satiety hormone concentrations leading to the reduction in energy intake [85]. Moreover, when inulin-type fructans were fed to mice, the number of Bifidobacteria demonstrated a significant increase, and an inverse correlation to the levels of lipopolysaccharide, glucose tolerance and development of fat tissue was observed [68].

The consumption of a synbiotic food, for one month, containing fructo-oligosaccharides and the probiotic strains Lactobacillus helveticus Bar13 and Bifidobacterium longum Bar33, was tested in 20 healthy subjects. The intake of the synbiotic food demonstrated no modification on the overall structure of the gut microbiome, but resulted in a shift of the fecal metabolic profiles, i.e. a significant increase of SCFA, ketones, carbon disulhide and methyl acetate, suggesting potential health promoting effects [86].

In a recent randomized controlled study on 65 mechanically ventilated trauma patients it was shown that the Symbiotic 2000FORTE formula [Medipharm, Kågeröd, Sweden], being a preparation of Prebiotioce enztosaceus 5-en33,4 Leucnosocie mesoterideos 32- 77:1, Lactobacillus paracasei spp. 19 and Lactobacillus plantarum 2362, plus Inulin, oat bran, pectin, and resistant starch as prebiotics, administered orally for 15 days versus maltodextrin as placebo, altered the composition of gut flora in favour of anaerobes [87]. In another randomized, double-blind trial; a beverage fermented with L. acidophilus and Propionibacterium freudenreichii was given to 43 healthy female subjects in order to study the satiety-inducing effects. Subjects exhibited a non-significant decreasing trend in ad libitum food consumption, but felt significantly fuller [P=0.02], were less hungry [P=0.004] and had less desire to eat [P = 0.006] after consumption of the fermented dairy beverage. The appetite-decreasing effects were ascribed to the production of propionate by P. freudenreichii [88]. Similarly, a decrease in appetite and an increase in satiety, leading to a decrease in total energy intake, as well as a decrease in hepatic de novo lipogenesis, has been demonstrated in human volunteers fed with inulin-type prebiotics [16 g daily] versus maltodextrin as a control [89].

Finally, the success in fecal transplantation for C. difficile diarrhea treatment [90,91] gives promising results for a new era involving transplantation of stools from lean subjects to achieve weight loss.

In summary, ongoing research on human gut microbiota seems, in the short term, to allow the positive manipulation of the interior milieu of a human being by means of either the appropriate microbiome exhibiting antiobesity effects and/or the right substrate [prebiotic] to promote its growth.

References


