Bβ-Fibrinogen Gene Promoter – 455 G/A Polymorphism Associates with Severity of Coronary Artery Stenosis in Male Victims of Sudden Pre-Hospital Death

Martiskainen M1,2*, Mikkelsson J4, Goebeler S1, Ilveskoski E1,2 and Karhunen PJ1

1School of Medicine, University of Tampere and Research Unit of the Laboratory Centre, Tampere University Hospital, Finland
2Heart Center / Division of Cardiothoracic Surgery, Tampere University Hospital, Finland
3Heart Center / Division of Cardiology, Tampere University Hospital, Finland
4Satakunta Central Hospital, Pori, Finland

Abstract

Background and Purpose: Elevated fibrinogen levels are associated with the risk of atherosclerotic disease and affected by smoking. In haplotype analyses, the A-allele of the –455 G/A promoter polymorphism of the Bβ-fibrinogen gene (FGB) was most strongly associated with elevated fibrinogen levels. The association of the FGB –455 G/A polymorphism with coronary artery disease (CAD) and its complications have not been studied at the vessel-wall level.

Methods: We measured coronary stenosis as well as coronary and aortic atherosclerotic areas in a prospective autopsy series of 300 middle-aged (33-69 years) men (the Helsinki Sudden Death Study). FGB –455 G/A genotype was determined by PCR.

Results: Genotype distributions were 69.9%, 24.9%, and 5.2% for GG, GA and AA, respectively. In a logistic regression model with age, hypertension, diabetes, body mass index (BMI) and smoking as confounders, there was a significant association between the A-allele of FGB –455 G/A and >50.0% stenosis in coronary arteries (44.0% vs. 25.3 %, OR=2.37, 95% CI 1.25 – 4.46, p=0.008), compared to GG homozygotes. There was no significant genotype-by-smoking interaction on the severity of coronary artery stenosis although the FGB –455 G/A A-allele had a more pronounced effect on stenosis severity. The FGB –455 G/A genotype was not linked with the extent of coronary or aortic atherosclerosis or with myocardial infarction (MI).

Conclusion: Carriers of the A-allele of the FGB –455 G/A polymorphism had more severe coronary artery stenosis but this genotype did not affect the extent of coronary or aortic atherosclerotic lesion areas.

Keywords: Fibrinogen; Polymorphism; Coagulation; Atherosclerosis; Coronary stenosis; Myocardial infarction

Introduction

Atherosclerosis is the primary cause of coronary artery disease (CAD), peripheral arterial disease (PAD) and stroke which are the leading causes of death in the Western world [1]. The known risk factors for atherosclerosis and CAD are the same as for sudden cardiac death (SCD), namely hypertension, diabetes, hypercholesterolemia, low high-density lipoprotein, smoking, male-sex and family history [2,3].

Fibrinogen is an acute phase protein synthesized by hepatic cells, and inflammation and smoking can increase fibrinogen levels [4,5]. During clot formation, fibrinogen acts as a substrate for platelet aggregation by binding to αIIb/β3 integrins on the adjacent platelet surfaces. Platelets also adhere to immobilized fibrinogen on endothelial cells and to vessel walls/subendothelial collagen [6-9]. Elevated fibrinogen levels are considered to be a risk factor for coronary heart disease (CHD) as fibrin is found in atheromatous plaques, and participates in the formation of occlusive thrombus [10-12].

The G/A variability in the –455 locus of the Bβ-fibrinogen (FGB) promoter region have previously been shown to associate with elevated fibrinogen levels and a risk of cardiovascular diseases and stroke [13-16]. The A-allele of the FGB –455 G/A polymorphism is linked with an increase in liver fibrinogen synthesis [17,18]. In haplotype analyses of Aα, Bβ and γ fibrinogen genes, the FGB –455 G/A rs1800790 was the single nucleotide (SNP) polymorphism that most strongly associated with fibrinogen levels, and was in complete linkage disequilibrium with other polymorphisms of the FGB gene family [19-21]. It has also been associated with atherothrombotic disease, although in clinical patients results are discordant for association with myocardial infarction [16,21].

We studied the association of the FGB –455 G/A promoter polymorphism with the severity of coronary stenosis (measured from silicone rubber casts of the coronary tree), morphometrically measured atherosclerosis (in the coronary arteries and abdominal aorta), and the risk of fatal autopsy-verified MI in a series of 300 middle-aged men who died suddenly, out-of-hospital (the Helsinki Sudden Death Study). We hypothesized that the FGB –455 A-allele might be associated with more severe CAD and that there may be a genotype-by-smoking interaction on the risk of CAD and adverse coronary events.

*Corresponding author: Mika Martiskainen MD, Department of Forensic Medicine, Medical School, University of Tampere, 33014 University of Tampere, Finland, Tel: +358 3 335 111; Fax: +358 3 3351 6170; E-mail: mika.martiskainen@uta.fi

Received August 10, 2011; Accepted October 20, 2011; Published October 24, 2011

Copyright: © 2011 Martiskainen M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

J Clin Experiment Cardiol
ISSN-2155-9880 JOEC, an open access journal

Volume 2 • Issue 9 • 1000158
Subjects and Methods

Prospective autopsy series of middle-aged men

The original study population comprised of a prospective consecutive series of 300 Caucasian white men aged 33 to 69, who were subjected to autopsy at the Department of Forensic Medicine, University of Helsinki from 1991 to 1992 (The Helsinki Sudden Death Study). This autopsy series covers 42% of all deaths under 65 years of age in one year for the area of Helsinki and its surroundings. Medical legal autopsy was performed due to unexpected and often unwitnessed sudden or violent death in non-hospitalized individuals. Fibrinogen polymorphism G/A –455 genotype data were available for 249 men. The cause of death was acute or old myocardial infarction in 23.6% (n=58), other cardiac causes for 15.4% (n=37), other diseases in 22.0% (n=54) and non-natural deaths (accidents and suicides) in 39.4% (n=97). CAD risk factors were obtained by a structured interview with the next of kin for the 135 deceased patients. This study was approved by the Ethics Committee of The Department of Forensic Medicine, University of Helsinki. More detailed descriptions of the study series and laboratory methods have been described elsewhere [22].

Measuring the percentage of stenosis in silicone rubber casts of coronary arteries

At autopsy, a coronary angiography was performed on 272 cases using vulcanizing liquid silicone rubber mixed with lead oxide as the contrast medium [22]. The proximal, middle, and distal stenosis of the main trunks of the left anterior descending coronary artery (LAD), left circumflex artery (LCX) and right coronary artery (RCA) were measured from the rubber cast model with a hand-held Mauser. The percentage of stenosis was obtained by dividing the diameter (millimetres) of the greatest stenosis with the diameter of the nearest proximal undamaged part of the model cast of the artery. Significant coronary artery disease was defined as over 50% stenosis in any coronary artery.

Measuring the area of atherosclerosis by computer-assisted morphometry of coronary arteries and the abdominal aorta

Coronary arteries and the abdominal aorta were fixed in 10% buffered formalin and stained for fat using the Sudan IV staining method [22]. The areas of fatty streaks, raised fibrous lesions, and complicated lesions (with fissures, hematoma or thrombosis) were measured by computer-assisted morphometry. The percentage area of these atherosclerotic changes was obtained by dividing the atherosclerotic area by the total vessel area, multiplied by 100. Similar measurements and morphometric methods were carried out for abdominal aortic autopsy samples.

Confirmation of myocardial infarction

At autopsy, the presence of MI was confirmed by macroscopic and histological examination of the myocardium. Coronary thrombosis was recorded whilst opening the coronary arteries, following angiography. Diagnostic studies of MI were done independently of cast or artery measurements. 29 men died of recent MI and an additional 29 had an old MI. Coronary thrombosis was observed in 16 men.

DNA procedures

DNA was isolated from frozen (-70°C) cardiac muscle samples using the standard phenol-chloroform method. The FGB –455 G/A polymorphism genotype was detected by PCR and restriction enzyme digestion followed by polyacrylamide gel electrophoresis. Primer sequences and the PCR protocol have been previously described in detail [23]. Genotyping was successful in 249 (83%) cases. There were 124 cases with complete data including genotype, smoking status, BMI, diabetes, hypertension and coronary artery stenosis measurements.

Statistical analysis

The data was analyzed by PASW Statistics (version 18.0, SPSS INC., Chicago, Illinois, USA) software. The Mann-Whitney U-test was used to analyze the association between the FGB –455 G/A A-allele carrier genotype and coronary artery stenosis, and coronary and aortic atherosclerotic lesion areas, because these values were not normally distributed. The association of the FGB –455 G/A A-allele carrier genotype with >50% stenosis of coronary arteries, AMI and coronary thrombosis were analyzed by Pearson’s Chi-square test. The results were confirmed using the MANOVA model, and logistic regression analysis with age, hypertension, smoking, diabetes and BMI included as confounding factors. Individuals with a non-coronary cause of death served as controls for analyses. For interaction analyses, a combination term was formed from the genotype and smoking data, assuming an increased risk profile: 1) never smoker with GG-genotype, 2) smoker with GG-genotype, 3) never smoker with A+ genotype and 4) smoker with A+ genotype. Smokers were considered as current or ex-smokers, whilst ‘non-smokers’ had never smoked.

Results

Prevalence of FGB –455 G/A alleles

Genotype distributions in our study were 69.9%, 24.9%, and 5.2% for GG, GA and AA, respectively. Allele distributions were in Hardy-Weinberg equilibrium. The frequency of the FGB –455 G/A A-allele in our series (17.7%) is similar (17.9%) to that reported by Humphries et al. [23]. Demographic properties according to genotype data are shown in (Table 1). Carriers of the FGB –455 G/A A-allele were slightly older (p=0.03) and more often smokers (p=0.03), compared to the common GG-homozygotes.

Severity of atherosclerosis and the FGB –455 G/A polymorphism

Analyses with the Mann-Whitney U-test showed that there were no significant associations between the FGB –455 G/A A-allele and atherosclerosis lesion types in coronary arteries or the abdominal aorta.
Coronary artery stenosis and the FGB -455 G/A polymorphism

The median stenosis percentage for LAD, LCX and RCA was 24.2%, 18.8% and 25.6%, respectively. In 32.9% (n=77) of the cases, the severity of coronary artery stenosis was 50% or more of the coronary diameter, in at least one major coronary artery (LAD, LCX, RCA).

In Mann-Whitney U-test analyses, the A-allele associated with the most severe stenosis in any coronary artery (p=0.005). Similarly, in Pearson’s Chi-square test analyses, the FGB -455 G/A A-allele was more frequently (44.0% vs. 25.3%, p=0.002) seen in men with >50.0% stenosis of at least one coronary artery when compared to GG homozygotes (Table 3). This association of the FGB -455 G/A A-allele with coronary stenosis was seen in LAD (24.0% vs. 10.9%, p=0.008), but not in LCX or RCA (Table 3).

In logistic regression analyses (enter model), the significant association between FGB -455 G/A A-allele and >50% stenosis in any coronary artery remained (OR=2.37, 95% CI 1.25 – 4.48, p=0.008) even with age, hypertension, smoking, diabetes and BMI as confounders (Table 3). This association was significant with >50% LAD stenosis (OR=2.53, 95% CI 1.18 – 5.44, p=0.02) but did not reach significance for RCA or LCX.

Cause of death, myocardial infarction, coronary thrombosis and the FGB –455 G/A polymorphism

The FGB -455 G/A A-allele did not relate to cardiac, other diseases or non-natural causes of death in univariate analyses. Smoking history associated with cardiac causes of death (83.5% vs. 16.5%, p=0.06), when compared to non-smokers in univariate analyses, although this was not replicated in logistic regression analyses (OR 1.20, 95% CI 0.47-3.08, p=0.70).

The FGB -455 G/A A-allele tended to be more frequent (10.7% vs. 4.6%, OR 2.43, p=0.11) among men with AMI, most likely due to coronary thrombosis, compared to controls (Table 3). However, the frequencies of the FGB -455 G/A A-alleles among men who died of old or acute MI were similar to controls who died of other diseases or non-natural causes.

Genotype-by-smoking interactions on atherosclerosis

Men with the FGB -455 G/A A-allele and a history of smoking (smokers and ex-smokers) more often had over 50% stenosis in univariate test analyses (p=0.03), compared to non-smokers. This association was lost in multivariate analyses (p=0.29). When ex-smokers were excluded, there was no significant difference in the degree of coronary artery stenosis with FGB -455 G/A genotype (p=0.14).

The genotype-by-smoking interaction on severity of coronary artery stenosis was not statistically significant. The FGB –455 G/A A-allele had a pronounced effect on the severity of coronary artery stenosis, regardless of smoking status (Figure 1). In addition, a genotype-by-smoking interaction was not observed on AMI or coronary thrombosis, or on coronary or abdominal aortic atherosclerotic lesion areas.

Discussion

We found the A-allele of the FGB -455 G/A polymorphism to associate with >50% coronary artery stenosis but not with the area of coronary and aortic atherosclerotic plaques in a population consisting of middle-aged men who died suddenly out-of-hospital. The FGB -455 G/A polymorphism did not associate with autopsy-verified MI, although a trend was seen for the FGB -455 G/A-allele and coronary thrombosis (Table 3). In univariate analyses there was a genotype-by-smoking interaction on the severity of coronary artery stenosis, regardless significance was lost in multivariate analyses. Furthermore, the FGB -455 G/A A-allele seems to have a pronounced effect on coronary artery stenosis severity, despite smoking status (Figure 1).

The A-allele of the FGB -455 G/A polymorphism has previously been found to associate with risk of peripheral artery disease (PAD) and elevated fibrinogen levels, but not with severity of CAD [24,25]. In a recent large scale association analysis comprising 111 candidate genes for premature coronary heart disease, the FGB -455 G/A polymorphism was identified as one of the SNPs influencing CAD [26]. This is in accordance with our findings that the FGB –455 G/A A-allele predicts more severe coronary stenosis in middle aged men. Green et al. reported in their review that the FGB –455 G/A polymorphism is associated with plasma fibrinogen levels and atherothrombotic disease [16]. According to a recent study on fibrinogen haplotypes and MI, the FGB –455 G/A polymorphism associated with elevated fibrinogen concentrations and was the only SNP to differentiate between fibrinogen concentrations [19].

The FGB -455 G/A A-allele genotype increases fibrinogen synthesis in the liver and therefore causes circulating fibrinogen levels to elevate, possibly contributing to the atherosclerotic process.
The genetic and environmental determinants of fibrinogen production from coronary plaques to significant stenosis in middle aged men. The A-allele of the FGB -455 G/A polymorphism is associated with more severe coronary artery stenosis, but not the extent of coronary or aortic atherosclerosis. There was no genotype-by-smoking interaction on the severity of coronary artery stenosis.

Conclusion

The A-allele of the FGB -455 G/A polymorphism is associated with more severe coronary artery stenosis, but not the extent of coronary or aortic atherosclerosis. There was no genotype-by-smoking interaction on the severity of coronary artery stenosis.

Acknowledgements

This study has been supported by grants from the following: European Union 7th Framework Program (grant number 201668 under the AtheroRemo Project), Medical Research Fund of Tampere University Hospital, Medical Research Unit of Seinäjoki Central Hospital, Pirkanmaa Regional Fund of the Finnish Cultural Foundation, Finnish Foundation for Cardiovascular Research, Aarne Koskelo Foundation, Yrjö Jahnsson Foundation, and Tampere Tuberculosis Foundation.

References

![Figure 1: Genotype-by-smoking interaction on the severity of stenosis in coronary arteries (n=124). Logistic regression analysis was used with age, hypertension, diabetes and BMI as confounders.](image-url)

19. BFA 158