Autism Compulsive Disorders

Shreya Nayak*
Department of Anatomical sciences, St Johns Medical College, India

Autism spectrum disorders (ASDs) are a phenotypically and etiologically multifarious set of disorders that include obsessive–compulsive behaviors (OCB) that moderately overlap with symptoms related to obsessive–compulsive disorder (OCD). The OCB seen in ASD vary hinge on the individual’s mental and sequential age as well as the etiology of their ASD. Although progress has been made in the measurement of the OCB related with ASD, more work is needed including the potential recognition of heritable endophenotypes. From the ASD perspective, information controlled during formal evaluations using the Autism Diagnostic Inventory—Revised (ADI-R), furnishes a sense of what behaviors are typical of some individuals with ASD. Recently reported the results of both investigational and confirmatory factor analysis of the ADI-R and established the existence of a Stereotyped behavior and Restricted attentiveness factor that includes each of the ratings on the Repetitive behavior domain. A number of other questionnaires and direct examination measures contain similar constructs. At present, the most comprehensive of these scales is the Repetitive Behavior Scale—Revised that includes 43 items divided into five realm. Yet another approach is to recognize potentially informative endophenotypes based on neuropsychological test presentation or on brain imaging findings. Ideally, traits identified in this manner would be apparent in unaffected family members as well as the probands. Quantitative genetic studies are designed to assess the relative strength of genetic and environmental influences on dissimilarity of particular traits within a population. In human research, this is most commonly studied using twin and embrace designs Autistic individuals may have symptoms that are individualistic of the diagnosis, but that can affect the individual or the family. An approximate 0.5% to 10% of individuals with ASD show unusual abilities, varying from splinter skills such as the memorization of trivia to the extraordinarily rare talents of enormous autistic savants. Many individuals with ASD show superior skills in consciousness and attention, relative to the general population. Sensory malformations are found in over 90% of autistic people, and are considered key features by some, although there is no good evidence that sensory symptoms transform autism from other developmental disorders. Autism has a robust genetic basis, although the genetics of autism are complex and it is unclear whether ASD is explained more by rare mutations with major effects, or by infrequent multigene interactions of common genetic variants. Complexity appears due to interactions among multiple genes, the environment, and epigenetic factors which do not change DNA succession but are heritable and influence gene expression. Many genes have been associated with autism via sequencing the genomes of affected individuals and their parents. Autism's symptoms result from maturation-related changes in various systems of the brain. How autism transpire is not well understood. Its mechanism can be divided into two areas: the pathophysiology of brain structures and processes related with autism, and the neuropsychological interrelationship between brain structures and behaviors. Autism has a strong genetic basis, although the genetics of autism are complex and it is unclear whether ASD is explained more by infrequent mutations with major effects, or by rare multigene interactions of habitual genetic variants. Antidepressants, especially selective serotonin reuptake inhibitors, contains the pharmacological treatment of choice for most patients with OCD. Not many medications are truly potent in the treatment of autism spectrum disorders, although recent studies designated that antidepressant might be of value in treatment of autism. Furthermore, indistinguishable brain structure deformities were found in patients with OCD and autism spectrum disorders. In divergence to patients with other anxiety disorders patients with OCD exhibited increased gray matter volumes in the caudate nuclei. Structural changes in this limbic area are also outlined in autism spectrum disorders. Such similarities and imbricates in putative pathophysiology are quite rare and apply to only a fraction of clinical samples.

*Corresponding author: Shreya Nayak, Department of Anatomical Sciences, St Johns Medical College, India. E-mail: shreyanayak@gmail.com

Received: May 4 2021; Accepted: May 21 2021; Published: May 31 2021


Copyright: © 2021 Nayak S. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.