Aspergillus fumigatus L-Amino Acid Oxidase-Two Step Purification and Characterization of the Enzyme

Susmita Singh1,2,*, Binod Kumar Gogoi1 and Rajib Lochan Bezbaruah1

1Biotechnology Division, North East Institute of Science and Technology (CSIR), Assam, India
2Department of Molecular Biology & Biotechnology, Tezpur University, Assam, India

Abstract

L-amino acid oxidase (L-aao) obtained from Aspergillus fumigatus was purified by ion exchange and gel filtration chromatographies. The yield of L-aao in the ion-exchange chromatography was 24.40 % while the recovery of purified L-aao by gel filtration was 18.70 % of the crude enzyme. The molecular mass of the purified enzyme was estimated to be 55 kDa by SDS PAGE and 93 kDa by gel filtration. The enzyme was stable up to 40°C and over a broad pH range of 5.6-9.2. The enzyme has higher specificity towards hydrophobic aromatic L-amino acids namely tyrosine and phenylalanine. The kinetic parameters, Km and Vmax were determined as 43.47 mM and 0.0434 μmol/min/mL respectively. Ten mM Benzoic acid and EDTA completely inhibited the enzyme, while minimum inhibition with glyoxal (29.56%) and α-napthol (12.4%) were observed. Riboflavin, sodium azide and 8-hydroxyquinoline inhibit the enzyme up to 44.89%, 49.63% and 70.07% respectively. MgSO4 at 104 M and 103 M increased the enzyme activity by 1.72 and 2.22 fold respectively, while CuSO4 at 104 M increased the activity by 1.65 fold. This is the first report of purification of L-aao from Aspergillus fumigatus.

Keywords: L-amino acid oxidase; Aspergillus fumigatus; Purification; Characterization

Introduction

The enzyme L-amino acid oxidase (L-amino acid: O2 oxidoreductase, EC 1.4.3.2) (L-aao) is a flavo-enzyme that catalyses the oxidative deamination of L-amino acid substrate into an α-keto acid with the production of ammonia and hydrogen peroxide. L-aao catalyses the oxidative deamination of a number of L-amino acids, following the chemical reaction,

\[H_2NCHRCOOH + O_2 + H_2O \rightarrow O=CRCOOH + NH_3 + H_2O_2 \]

These enzymes are widely distributed across diverse phyla from bacteria to mammals including many venomous snakes [1,2]. L-aao in microorganisms is involved in the utilization of nitrogen sources [3] and those in animals have been characterized as having distinct biological and physiological functions. The function of snake venom L-aao is still poorly understood, although they play a role in inducing apoptosis, affect platelets and are considered to be toxins [4].

Much work has been done on snake venom L-aao and the purification of L-aao from various snake venoms has been reported by several groups [5-8].

There are very few reports of fungal, especially Aspergillus L-aao [9]. Few workers report the purification of L-aao from fungi and bacteria. L-aao was purified from Neurospora crassa by combination of ammonium sulphate precipitation, gel filtration and DEAE cellulose chromatography [10]. A novel L-glutamate oxidase was purified to homogeneity from Streptomyces endus [11]. The gram positive bacterium Rhodococcus opacus produces an L-aao which was purified to a high degree of homogeneity [12].

Previously, the optimization of medium and cultivation conditions for maximum production of L-aao from Aspergillus fumigatus [13] and the ability of Aspergillus fumigatus L-aao to cause the racemic resolution of DL-amino acids were reported by us [14]. In this communication, we report the purification of Aspergillus fumigatus L-aao and characterization of the enzyme thereof.

Materials and Methods

Chemicals

The chemicals used were commercially available and of reagent grade. The chemicals were purchased from Qualigens, Merck, HiMedia and Sigma.

Microorganism and culture condition

Aspergillus fumigatus (Gene Bank Accession No: FJ765414) was cultivated in a medium containing (gl-1): glucose 10; Na2HPO4 2.5; KH2PO4 0.5; Na2HPO4 0.02; DL-alanine 20mM as inducer, and metal salts; MgSO4.7H2O 0.5; CaCl2.2H2O 0.5; H3BO3 0.05; Na2MoO4 0.02; CuSO4.7H2O 0.02; FeSO4.7H2O 0.02 and DL-alanine 20mM as inducer. The pH was adjusted to 7.0 at 30°C, in a shaking speed of 200 rpm.

Isolation of L-aao crude enzyme

Aspergillus fumigatus cells (96 h) were harvested by centrifugation at 9400 g and 10°C, for 10 minutes (Sigma Centrifuge 30K, Osterode am Harz, Germany). The cells (38.4 g, wet weight) were then homogenized in a French pressure cell press (Thermo electronic, Rochester, New York, USA) at 1500 psi for 5 minutes in ice cold condition. The cell suspension obtained was centrifuged at 13600 g for 15 minutes at 5°C. The cell debris was discarded and the clear supernatant was taken as the crude enzyme.

*Corresponding author: Dr, Susmita Singh, Department of Molecular Biology & Biotechnology, Tezpur University, Napaam-784028, Assam, India, Tel: +91-9957772253; E-mail: susmitasingh123@gmail.com

Received December 13, 2013; Accepted February 06, 2014; Published February 11, 2014

Copyright: © 2014 Singh S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Protein concentration determination

Protein concentration determination was done by the method of Lowry et al. [15], by taking Bovine albumin fraction V (Sigma, USA) as the standard protein.

L-amino acid oxidase assay

The assay of L-aao activity was carried out by measuring the formation of keto acid according to the method of Jian et al. [16], with slight modifications.

0.5 mL (1.2 mg) of the enzyme was allowed to react with 0.5 mL of 100 mM of substrate (DL-alanine, unless otherwise stated) in 50 mM of sodium phosphate buffer, pH 7.2 for 1 h at 30°C, 200 rpm. After the reaction, a total of 0.5 mL of the reaction mixture was diluted 5 times with distilled water and reacted with 0.4 mL of 2, 4-dinitrophenylhydrazine (0.2% saturated in 2 N HCl) for 10 minutes. To this 1.5 mL of 3M NaOH was added and absorbance at 550 nm was recorded after 15 minutes. Respective blanks and controls were also taken during the assay. One unit of L-aao activity is defined as the amount of enzyme that produces 1 µmol of pyruvate / minute /ml of enzyme, under the conditions described above.

Purification of A. fumigatus L-aao

Ammonium sulphate was added to the crude enzyme (40 mL) of A. fumigatus at increasing concentrations of 25-90 % with continuous stirring at 5°C. The mixture was kept overnight at 5°C for the precipitation of proteins to occur. The protein precipitate that was formed was discarded, the protein pellet was dissolved in minimal volume (6 mL) of 50 mM sodium phosphate buffer, pH 7.2 and dialysed against 10 mM of the inhibitors (α-napthol, EDTA, Glycine, Sodium azide, CuSO4 and FeSO4) on enzyme activity was investigated by adding the inhibitors on the activity of the enzyme was investigated by adding the different metal ions in the reaction mixture at 10 -4 M and 10-3 M concentration with various DL-/L- and D-amino acids. The substrate specificity of the enzyme, the reaction temperature was varied from 25°C to 35°C, at pH 7.2. The heat inactivation of the enzyme was tested against various DL-/L- and D-amino acids.

Substrate specificity and enzyme kinetics: The substrate specificity of the enzyme was tested against various DL-/L- and D-amino acids. The substrates were added in 50 mM concentration and the enzyme (2.4 mg/mL) activity was performed under standard assay conditions as stated previously.

The kinetic parameters Km and Vmax were determined by taking 50 mM buffers of different pH i.e. sodium acetate (pH 4.0, 5.6); sodium phosphate (pH 6.0, 7.2); Tris-HCl (pH 8.8) and carbonate-bicarbonate buffer (pH 9.2, 10.0) were used under the standard assay conditions. For determining the temperature optima of the enzyme, the reaction temperature was varied from 25°C to 35°C, at pH 7.2. The heat inactivation of the A. fumigatus L-aao was performed by incubating the enzyme at temperatures from 40º to 90°C for 5-10 minutes at pH 7.2. The effect of heat inactivation in the presence of substrate was determined by taking 50 mM of DL-alanine during the study.

Effect of inhibitors and metal ions on L-aao activity: The effect of inhibitors on the activity of the enzyme was investigated by adding 10mM of the inhibitors (α-napthol, EDTA, Glycine, Sodium azide, 8-hydroxyquinolone, Benzoic acid and Riboflavin) in the reaction mixture. After the reaction, the reaction mixture was centrifuged at 9400 g for 10 minutes and the assay was done with 0.5 mL as described previously.

The effect of metal ions (MgSO4, CaCl2, H3BO3, Na2MO4, ZnSO4, CuSO4 and FeSO4) on enzyme activity was investigated by adding the metal ions in the reaction mixture at 10−4 M and 10−3 M concentration and performing the enzyme reaction.

Results

Purification of L-aao from A. fumigatus

Following ion-exchange chromatography on DEAE Sephadex A-50, the enzyme was eluted in a single peak, fraction F1 (Figure 1a) Catalase was co-eluted along with the L-aao (results not shown). Fraction F1 was further separated into 2 peaks on a Sephadex G-75 column, of which L-aao activity was detected in fraction F2 (Figure 1b). The catalase was separated from the L-aao at this step which was confirmed by the qualitative catalase test. The protein yield of this purification is shown in Table 1. The homogeneity of purified L-aao was corroborated by C18 RP-HPLC which showed one major peak (Figure 2c). The minor peak that was seen was that of the solvent.
The purified *A. fumigatus* L-aao migrated as a single band in SDS-PAGE under reducing condition. The molecular mass of purified L-aao was found to be 55 kDa as estimated from SDS-PAGE (Figure 2a). The apparent molecular weight of *A. fumigatus* L-aao was 93 kDa as determined by gel filtration chromatography (Figure 2b), which suggests that the *A. fumigatus* L-aao is a dimeric protein.

Substrate specificity and enzyme kinetics

The best substrates were found to be DL-tyrosine and L-phenylalanine, which are aromatic amino acids. L-amino acids like L-threonine, L-cystin, L-tryptophan, L-glutamic acid are not attacked by the enzyme. Also there was no activity against the basic amino acid L-arginine. No enzyme activity was detected against the D-amino acids. Table 2 gives a comparison of the enzyme activity with different substrates.

The substrate saturation kinetics of the enzyme was investigated with DL-alanine as the substrate. The enzyme activity increased simultaneously with increasing substrate concentration and reached its maximum at 100 mM. The activity at 150 mM and 200 mM were
almost equal to the activity at 100mM. The substrate saturation graph was drawn by plotting the substrate concentration vs. the velocity of reaction (Figure 3b). The kinetic parameter, K_m was 43.47 mM and V_{max} was 0.0434 μmol/min/mL as determined from the Lineweaver Burk plot (Figure 3c).

Effect of inhibitors and metal ions on L-aao activity

The compounds had inhibitory effects up to various degrees (Table 3). Benzoic acid and EDTA, at concentration of 10mM completely inhibited the enzyme. The enzyme showed minimum inhibition with H3BO$_3$, Na$_2$MO$_4$, Zn$_2^+$, and FeSO$_4$ did not have positive effect and any protection for our enzyme.

MgSO$_4$, at 10$^{-1}$ M and 10$^{-2}$ M both increased the enzyme activity by 1.72 and 2.22 fold respectively, while CuSO$_4$ at 10-3 M increased the enzyme activity by 1.65 fold (Figure 3(d)). The metal salts like Ca$^{2+}$, H3BO$_3$, Na$_2$MO$_4$, Zn$^{2+}$, and FeSO$_4$ did not have positive effect and inhibited the enzyme activity up to various degrees.

Table 1: Purification table for *A. fumigatus* L-aao.

<table>
<thead>
<tr>
<th>Step</th>
<th>Vol. (mL)</th>
<th>Total A. (U)</th>
<th>Total Prot. (mg)</th>
<th>S.A.(U/mg)</th>
<th>Yield (%)</th>
<th>Purif. fold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude</td>
<td>40</td>
<td>1.23</td>
<td>96.8</td>
<td>0.012</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>ASF</td>
<td>6</td>
<td>0.92</td>
<td>38</td>
<td>0.024</td>
<td>74.8</td>
<td>2</td>
</tr>
<tr>
<td>IEC</td>
<td>14</td>
<td>0.3</td>
<td>7</td>
<td>0.043</td>
<td>24.4</td>
<td>3.6</td>
</tr>
<tr>
<td>GFC</td>
<td>12</td>
<td>0.23</td>
<td>1.9</td>
<td>0.121</td>
<td>18.7</td>
<td>10</td>
</tr>
</tbody>
</table>

ASF: ammonium sulphate fractionation; IEC: Ion Exchange Chromatography on DEAE Sephadex A-50; GFC: gel-fractionation chromatography on Sephadex G-75

Table 2: Comparison of the enzyme activity with different substrates.

<table>
<thead>
<tr>
<th>Substrate (50mM)</th>
<th>U/mL</th>
<th>% R.A*</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL-alanine</td>
<td>0.028</td>
<td>42</td>
</tr>
<tr>
<td>L-alanine</td>
<td>0.036</td>
<td>54.1</td>
</tr>
<tr>
<td>D-alanine</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DL-leucine</td>
<td>0.037</td>
<td>55.6</td>
</tr>
<tr>
<td>L-methionine</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L-cystine</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L-phenylalanine</td>
<td>0.051</td>
<td>76</td>
</tr>
<tr>
<td>DL-tyrosine</td>
<td>0.067</td>
<td>100</td>
</tr>
<tr>
<td>L-tryptophan</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L-serine</td>
<td>0.044</td>
<td>66</td>
</tr>
<tr>
<td>L-threonine</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L-aspartic acid</td>
<td>0.009</td>
<td>13.2</td>
</tr>
<tr>
<td>L-glutamic acid</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L-arginine</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* % Relative activity (i.e. activity with respect to maximum)

Table 3: Effect of inhibitors on the *A. fumigatus* L-aao.

<table>
<thead>
<tr>
<th>Inhibitor</th>
<th>Units</th>
<th>% Inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nil</td>
<td>0.0274 ± 0.0008</td>
<td>0</td>
</tr>
<tr>
<td>8-hydroxyquinoline</td>
<td>0.0082 ± 0.0002</td>
<td>70.07</td>
</tr>
<tr>
<td>EDTA</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Glycine</td>
<td>0.0193 ± 0.0004</td>
<td>29.56</td>
</tr>
<tr>
<td>Sod azide</td>
<td>0.0138 ± 0.0002</td>
<td>49.63</td>
</tr>
<tr>
<td>α-naphthol</td>
<td>0.024 ± 0.0025</td>
<td>12.4</td>
</tr>
<tr>
<td>Riboflavin</td>
<td>0.0151 ± 0.0002</td>
<td>44.89</td>
</tr>
<tr>
<td>Benzoic acid</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

The data are expressed as mean of three individual experiments ± std.dev

Discussion

In the present work, we purified a novel L-aao from *Aspergillus fumigatus* to a high degree of molecular homogeneity after two chromatographic steps. The yield of L-aao in the ion-exchange chromatography was 24.40% while the recovery of purified L-aao by gel filtration was 18.70% of the crude enzyme. Co-elution of catalase occurred in DEAE Sephadex A-50 chromatography but catalase was separated from the L-aao during gel filtration. The molecular mass of *A. fumigatus* L-aao was found to be 55 kDa when estimated by SDS-PAGE and the apparent molecular mass was found to be 93 kDa as estimated by gel filtration chromatography which suggests that the enzyme is a dimeric protein, which is consistent with the molecular mass of *Streptomycyes endus* L-aao (50 kDa by SDS-PAGE and 90 kDa by gel chromatography) [11]; *Rhodococcus opacus* L-aao (53.2 kDa by SDS-PAGE and 99 kDa by gel chromatography) [12] and that of snake venom L-aao like *Daboia russelli siamensis* L-aao (58.0 kDa) [18] and *Agkistrodon contortrix laticeps* L-aao (60 kDa) [19]. Snake venom L-aao are usually homodimeric glycoproteins with a molecular mass of around 110-150 kDa when measured by gel filtration. However, when assayed by SDS-PAGE, both under reducing as well as non-reducing conditions, the molecular mass is around 50-70 kDa [6,20,21]. The HPLC of the purified *A. fumigatus* L-aao in a RP C18 column showed one major peak of the enzyme and a minor peak corresponding to the solvent. This chromatogram pattern of the purified enzyme is similar to the *Bolitrops alternatus* L-aao [6] and *Bungarus fasciatus* L-aao [22] which show a major peak corresponding to the purified enzyme and a peak corresponding to the solvent.

A. fumigatus L-aao is stable over a broad pH range of 5.6-9.2 with the highest enzyme activity detected at pH 7.2. The *S. endus* L-glutamate oxidase was stable in the pH range of 5.5-7.5 [11], while the optimal activity of the *R. opacus* L-aao was at pH 8-9 [12]. The neutral, cell free L-aao solution of *Proteus vulgaris* was stable for weeks at 0°C [23]. The stability decreased as the pH was lowered and below pH 4 the enzyme was rapidly inactivated.

Crotalus adamanteus L-aao was stable to heat (70°C) in presence of L-leucine with only one third losses in activity after 60 minutes incubation [24]. However, treatment of the enzyme at 70°C in the absence of L-leucine lost all activity within 5 minutes. L-phenylalanine and L-methionine (at concentrations of 0.0091M) also protected the enzyme from heat denaturation, whereas equimolar concentrations of D-leucine and L-lysine did not protect the enzyme and L-valine and L-alanine afforded less or no protection [24]. The enzyme is greatly inhibited by incubation at temperatures above 37°C and there was almost total loss in enzyme activity when the enzyme was incubated for 5 minutes at 50°C [12]. Also, the *P. vulgaris* L-aao was unstable in neutral salt solution above 50°C. 5 minutes at 55°C destroyed 78% of the activity, while 5 minutes at 60°C destroyed all enzyme activity [23]. This is in compliance with our findings that *A. fumigatus* L-aao is inhibited by temperatures above 40°C. Treatment of the enzyme at 40°C and 50°C for 5 minutes causes 38.47% and 67.19% loss in activity as compared to the activity of the untreated enzyme. The presence of substrate (50mM, DL-alanine) during the heat treatment did not offer any protection for our enzyme.

A. fumigatus L-aao shows a certain degree of substrate preference. The enzyme has a greater specificity towards hydrophobic aromatic amino acids namely DL-tyrosine and L-phenylalanine. D-amino acids are not attacked. The substrate specificity in decreasing order is
as follows Tyr > Phe > Ser > Leu > Ala > Asp. The enzyme did not act on the tested basic amino acids. This is in disagreement with the R. opacus L-aao [12] and B. alternatus snake venom L-aao [6] since basic amino acids seemed to be good substrates for these organisms. The best substrates for the snake venom L-aao are the L-isomers of phenylalanine, tyrosine, leucine, isoleucine, methionine and tryptophan [5,19,25] and this is also true for A. fumigatus L-aao with the exception of L-methionine and L-tryptophan which are not recognized as substrates by this enzyme.

Benzoic acid and EDTA, at concentration of 10 mM completely inhibited the enzyme. Klein and Kamin [26] studied the effect of benzoate on D-amino acid oxidase and suggested that the inhibition was related to the formation of a benzoic acid–enzyme complex and the action of this inhibitor is mainly substrate competitive. This may be true for A. fumigatus L-aao since the benzoic acid completely inhibits the enzyme. Benzoic acid also inhibits Penicillium chrysogenum L-aao [27] and snake venom L-aao of Crotalus adamanteus [28], Trimeresurus murosquamatus [29] and Rattus norvegicus [28]. The Chlamydomonas reinhardtii L-aao was inhibited up to 90% by 10 mM EDTA [30]. Napthol and glycine were found to inhibit the L-aao of Anacystis nidulans and R. opacus [12,31]. The activity of the R. opacus enzyme was strongly decreased by competitive inhibition in glycine buffer. This is in slight disagreement in our case, since A. fumigatus L-aao showed minimum inhibition with glycine (29.56%) while α-naphthol inhibited the enzyme up to 12.4% only. Sodium azide was reported to be an inhibitor of L-aao of A. nidulans [31] and Proteus sp. [32] and this was also true for the A. fumigatus enzyme which is inhibited up to 49.63%. Riboflavin inhibits the A. fumigatus enzyme moderately up to 44.89% and this was also observed for L-aao of Bombyx mori [33]. Deurre et al. [34] found that 8-hydroxyquinoline is an inhibitor of Proteus rettgeri L-aao and this is also true for our enzyme.

Ca2+, Zn2+, Mg2+ and Cu2+ were reported to be inhibitors of A. nidulans L-aao [31]. This was partly true for A. fumigatus L-aao, which was inhibited by Ca2+ and Zn2+ but Mg2+ and Cu2+ activated the enzyme up to many fold.

Acknowledgements

The financial assistance received from Council of Scientific and Industrial Research in the form of Senior Research Fellowship to S. S. is duly acknowledged.

The authors thank Dr. P.G. Rao, Director, NEIST, Jorhat for providing the facilities for carrying out the work. Author S.S. also acknowledges UGC’s Dr. D. S. Kothari Post-Doctoral Fellowship scheme for providing facility during writing of the manuscript.
References