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Abstract

Mass spectrometry has emerged as a core technology for high throughput proteomics profiling. It has enormous
potential in biomedical research. However, the complexity of the data poses new statistical challenges for the analysis.
Statistical methods and software developments for analyzing proteomic data are likely to continue to be a major area
of research in the coming years.

In this paper, a novel statistical method for analyzing high dimensional MALDI-TOF mass-spectrometry data in
proteomic research is proposed. The chemical knowledge regarding isotopic distribution of the peptide molecules
along with quantitative modeling is used to detect chemically valuable peaks from each spectrum. More specifically,
a mixture of location-shifted Poisson distribution is fitted to the deamidated isotopic distribution of a peptide mol-
ecule. Maximum likelihood estimation by the expectation-maximization (EM) technique is used to estimate the pa-
rameters of the distribution. A formal statistical test is then constructed to determine whether a cluster of consecutive
features (intensity values) in a mass spectrum corresponds to a true isotropic pattern. Thus, the monoisotopic peaks
in an individual spectrum are identified. Performance of our method is examined through extensive simulations. We
also provide a numerical illustration of our method with a real dataset and compare it with an existing method of peak
detection. External biochemical validation of our detected peaks is provided.
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Introduction

Proteomics is the large scale study of proteins in order to
obtain a global, integrated view of disease processes, cellu-
lar processes and networks at the protein level. In contrast
to traditional approaches that examine one or a few pro-
teins at a time, proteomics attempt to examine large num-
bers of proteins concurrently. Mass spectrometry (MS) has
been successfully applied to the analysis of protein/peptide
and has become the workhorse of proteomics in the last

few years (Aebersold and Mann, 2003). A mass spectrom-
eter takes a molecular mixture as input and determines the
mass of the molecules, or, more precisely, their mass over
charge ratio, m/z. The output of mass spectrometer is re-
ferred to as a spectrum. Ideally, a feature in a mass spec-
trum indicates the presence of molecules of the correspond-
ing m/z value in the sample, while the height of the feature
is referred to as the observed intensity y. However, both the
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m/z values and the intensities y’s are influenced by con-
founding factors.

Mass spectrometry (MS) for the protein analysis consists
of diverse technologies and techniques e.g. Matrix-assisted
laser desorption/ionization-time of flight (MALDI-TOF),
Surfaceenhanced laser desorption/ionization-time of flight
(SELDI-TOF) etc. Although, reproducibility of the data is
in question for different mass spectrometry platforms, there
are many works relating to identification of proteomic bio-
logical markers using mass spectrometry (Petricoin et al.,
2002a, b, c, d; Wulfkuhle, 2003; Zhu et al ., 2003).
Diamandis (2003, 2004a, b, c) revealed that proteomic
biomarkers are more specific and sensitive than others, even
though there are many challenges when detecting them. Till
today, discovery of biomarkers using automatic analysis of
proteomics mass spectra is still growing.

One of the first steps of analyzing mass spectrum is to
detect true signals or peaks from contaminated features
(Mantini et al., 2007; Morris et al., 2007). Most peak de-
tection algorithms simply identify peaks based on their am-
plitude. The performance of a peak detection method di-
rectly affects the subsequent process, such as possible
biomarker identification of a protein (Noy and Fasulo,
2007). Unlike peak detection using amplitude, monoisotopic
peak detection is simply detecting a unique peak for each
peptide. Monoisotopic peak means the mass of the peptide
if no heavy isotopes are involved. Because of their unique-
ness, most of the peptide mass finger printing (PMF) tech-
niques use monoisotopic peaks to identify proteins. Thus,
it is important to precisely determine the monoisotopic peak
from a collection of features.

Algorithms which detect monoisotopic peaks usually con-
sider the probable isotopic distributions of peptide molecules
within a spectrum. So far only the Peak Harvester devel-
oped by Breen et al. (2000, 2003) can automatically detect
monoisotopic peaks using a mixture of location-shifted
Poisson distribution to model the isotopic distributions of
the peptide molecules. However, the parameter estimation
of the Poisson distributions in their case involves substan-
tial assumptions derived from the prior knowledge in the
protein sequence database. We modify the procedure of
parameter estimation to be a data driven approach instead
of a database approach. In our method, parameters of the
location-shift mixture Poisson models are estimated using
maximum likelihood method with Expectation Maximiza-

tion (EM) technique, and the behavior of the EM estima-
tors proposed is studied numerically through Monte Carlo
simulations.

The structure of this paper is as follows: In Section 2, we
discuss the methods employed for preprocessing, extrac-
tion of isotopic distribution, model fitting, and checking
the adequacy of the fitted model along with testing for
monoisotopic peaks. We describe the simulation study for
showing the adequacy of the parameter estimation through
power and size calculation in Section 3. Section 4 contains
a real data analysis example and relative performance of
our method with another recent method of peak detection.
Section 5 contains discussion and more details about future
work.

Materials and Methods

Data Preprocessing

As data preprocessing could severely affect the outcome
of the monoisotopic peak detection, all steps in data pre-
processing should be carefully evaluated. A volume of work
has been done on preprocessing, e.g. Breen et al. (2002,
2003) used interpolation techniques and mathematical mor-
phology for the detection of important features or peaks.
Including the work of Wu et al. (2003) on background noise
reduction, Satten et al. (2004) for standardization and
denoising the MALDI-MS spectra, Malyarenko et al. (2005)
for baseline correction etc. Coombes et al. (2005) and Morris
et al. (2005) used wavelets for noise reduction. Sauve and
Speed (2005) used a mathematical morphological filter to
denoise a spectrum followed by dynamic programming to
align multiple spectra. Mantinni et al. (2007) used a Kaiser
digital moving window filter to obtain smoothed signal, then
subtracted a signal trend for baseline removal. Once the
baseline removal was completed, a local maxima is used to
find the most significant peaks after eliminating the fea-
tures with intensities lower than a non-uniform threshold
proportional to the noise level. Then, the detected peaks
are classified as either protein or noise peaks on the basis of
their m/z values. In this paper, a different preprocessing ap-
proach is proposed to identify regions of interest.

Our preprocessing of MALDI-TOF data involves two
steps: baseline correction and denoising. The process con-
verts each spectrum into stick representation where each
stick corresponds to a denoised and baseline corrected peak.
Our baseline correction relies on a method proposed by Li
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et al., (2001) and noise removal which is based on our pro-
posed method. Li et al., (2001) have written a number of
software routines to handle mass spectrometry data and have
combined them into R Package, PROcess which is avail-
able from http://www.bioconductor.org. The routine, bslnoff,
in the PROcess package is used to remove baseline drift
from the spectrum. The function bslnoff divides the spec-
trum into unequal sections, find a minimum or a quantile
corresponding to given probability of each section, replace
each intensity by that minimum and fits a curve through all
points.

Although the spectra after baseline correction have a com-
mon scale and fair homoscedasticity, they still contain a
mixture of noise and signal. So, we denoised all the spec-
tra. A cutoff point (h) is chosen such that the features se-
lected correspond to real m/z peaks. The cutoff should be
large enough to eliminate the initial noisy region but small
enough to retain any peaks that could correspond to real
observable proteins or peptides. The principle is based on
keeping the features with intensities greater than certain

threshold h, { ,( ) , 0, Otherwise
y y hy yI y h >= > = where is the in-

dicator function, the main advantages of this denoising pro-
cess is very simple, do not require any model fitting and
very fast. Another critical point in that we do not need to
transform the intensities of the remaining peaks.

Isotopic Distributions

Isotopes are atoms of the same element with the same
atomic number (number of electrons or protons) but with
different atomic masses due to presence of different num-
ber of neutrons. For example, two naturally occurring car-
bon isotopes are C12 and C12. Both isotopes are exactly the
same except that C12 has 6 neutrons, while C13 has 7 neu-
trons. As a result, their atomic masses are 12 and 13.0033
unified atomic mass unit (mu), or dalton (Da), is a unit of
mass used to express atomic and molecular masses, respec-
tively. The successive isotopic elements of a peptide mol-
ecule are commonly 1 (Da) apart. On the other hand, the
monoisotopic peak is formed from the lowest-mass stable
isotope of each element (i. e. all carbons are C12, all nitrogens
are N14 , all oxygens are O16 and all sulphers are S32 etc.)
and has a unique element composition, whereas other iso-
topic peaks include contributions from different elemental
combinations (e.g., two C13 vs. two N15 vs. one C13 and one
N15, etc., at ~2 (Da) higher in mass than the monoisotopic
mass). Because of the uniqueness of the monoisotopic peaks,

most peptide mass fingerprinting (PMF) techniques used
them to identify proteins by matching their constituent frag-
ment masses (peptide masses) to the theoretical peptide
masses generated from a protein or DNA database.

Considering the high influence of the isotopic distribu-
tion on finding the monoisotopic peaks, a new scheme is
proposed for extracting the isotopic distribution of peptides.
Our scheme works as follows: Assume that contiguous peaks
x or m/z of 1Dalton (Da) apart exist in a isotopic distribu-
tion and that a is taken as starting value for identifying a
isotopic distribution pattern in a spectrum. We make sure
that there are no peaks to the left of a within 1 ± .05 Da,
where .05 is the error tolerance (Breen et al., 2003) due to
limitations of mass resolution. We can identify a isotopic
distribution by selecting the peaks at a, a + 1 ( ± .05), a + 2
( ± .05), and we stop if a gap exists. The gaps exist when
the distance between two consecutive peaks is greater than
1(± .05) Da.We kept repeating this procedure and form all
possible isotopic distribution patterns in the spectrum. Be-
fore extracting the isotopic distribution, some binning is
applied to reduce the data because spectrum data are very
large. Our binning scheme works as follows: we round all
the m/z values and within 1Da interval of each m/z, we keep
the one corresponds to the maximum value of the intensity   y.

Model Fitting

A isotopic distribution of any mass peptide can be mod-
eled using binomial expansion (McCloskey, 1990). How-
ever, as the number of total atoms n of a specific type is
large compared to the relative abundance of the isotope p,
one can fit a Poisson distribution to model a isotopic distri-
bution (Breen et al., 2000, 2003). However, overlapping dis-
tributions of resolved peaks can happen due to deamidation
(Breen et al., 2000). Deamidation is a process that some
proportion of an amino acid N or Q gets converted to D or
E respectively. The change results in an increase of 1Da in
the mass of the peptide molecule that carries the modified
amino acid caused by the replacement of NH. groups from
N or Q with OH groups from D or E. So, there will be a
shift to the isotopic distribution. As the deamidation of a
peptide makes the isotopic distribution of a peptide into
two super imposed signals, a mixture of location-shifted
Poisson is fitted to model each of the deamidated (possi-
bly) isotopic distribution.

Breen et al., (2000, 2003) utilized existing database knowl-
edge to establish a linear equation between M the mean of a
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Poisson distribution and the peptide’s molecular weight m
which is known. To do that, an average amino acid (AA)
C10H16N3O3 is constructed by averaging all AAs from all
proteins in the SWISS-PROT database. To cover a mass
range from m1 = 245.1367 Da to m15 = 3410.8059 Da, mul-
tiples of the average AA are used. For each constructed theo-
retical peptide with mi:i = 1,15, the isotopic distributions
are calculated using protein Prospector. The mean Mi is
found by minimizing the sum absolute deviation between
the components of distributions. As a result, the mean M
can be calculated from the following equation M = .000594m
−  .03901. Using this linear equation, they computed ex-
pected heights of peaks in a spectrum and decided (in a
somewhat ad hoc or non-statistical manner) whether the
observed peaks can correspond to a series generated by a
peptide. Since the regression line depends on the composi-
tion of the database whose coverage could change over time
and may not be reliable in all cases; in addition, the result-
ing method may not be robust with respect to a change in
the operational parameters of the mass spectrometry ex-
periment.

The main advantage of our method over Breen et al., (2000,
2003) is that we are not required to make use of any exter-
nal knowledge for estimating the parameter values of the
model. The parameters of interest are all local to a given
spectra which are estimated using a statistical estimation
technique (maximum likelihood). Furthermore, a call is
subsequently made based on a statistical significance test
of goodness of fit. Thus, our method is simpler (no opera-
tional or tuning parameters to select other than the thresh-
old stage), automatic and statistically well grounded.

The proposed mixture model in our paper fitted to a col-
lection of adjacent features *{ ( ) : , 0 }ay x x a i i i= + =   at low
to moderate molecular weight of peptides approximates the
(relative) intensity distribution with that of a probability
histogram corresponding to a mixture of two location-shifted
Poisson distributions,

1 2, ,( ) / ( ) (1),w py x T f i oλ λ= +

with
1 2

1 2

( 1)
1 2

, , ( ) (1 ) ( ),
! ( 1)!

i i

w
e ef i w w I i
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λ λ

λ λ
λ λ− − −

= + − × ≥1
−             (1)
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*
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0
, 0,1 , ;  ( )
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a
i

i
x a i i i T y a i

=
= + = = +∑  is the sum of

the intensity values and a is the starting value of the isoto-
pic  pattern; the op (1) term converges to zero in probability

as T gets large. Learning the mixture, namely estimating
the weight w and the parameters : 1,2j jλ =  of each Pois-
son distribution, is carried out through likelihood maxi-
mization using the EM algorithm (Dempster et al., 1977;
McLachlan and Krishnan, 1977). We present a methodol-
ogy which involves the representation of the mixture prob-
lem as a particular case of maximum-likelihood (ML) esti-
mation when the observations can be viewed as complete
data. The ML method is so far the most widely used method
of estimation. The associated efficiency and the well-un-
derstood properties of the ML estimates are well accepted.
Previously, the computational difficulties in deriving the
ML estimates had led the researches to use different esti-
mation. However, nowadays the impact of computer inten-
sive methods resulted in a very large number of applica-
tions based on ML estimation.

The Score Equations for Estimating the Model Param-
eters

Suppose that we have a random sample

1 2, , , TX X X where each X corresponds to the respective
m/z value a+i in a isotopic distribution and has a probabil-
ity function 

1 2, ,wPλ λ given by (1). We do not actually ob-
serve the individual X but rather the histogram of X which
would represent part of a spectrum displaying a
monoisotopic pattern. However, as shown later, this does
not pose a problem for parameter estimation and statistical
inference since all the procedures will be based on the
grouped data (histogram) that forms a set of sufficient sta-
tistics for this model.

The log-likelihood function l of this sample is:

1 21 2 , , 1 1
1 1

( , , ) log( ( )) log( ( )
T T

w k k
k k

w f x w f xλ λλ λ λ
= =

= = |∑ ∑

2 2( 1 )),kw f x λ+ − |   (2)
where 1 2, 1w w w w= = −  are the mixing proportions and

( ) ( 0) / !,j x
j jf x I x e xλλ λ−| = ≥ is the Poisson probability

mass function with parameter , 1,2.j jλ =

In order to find the maximum likelihood estimators, we
set up the score equations by equating all the partial deriva-
tives of  with 0 solving them simultaneously:

1

11 1 2 1

( )
: 0,

( (1 ) ( 1 )

T
k

k k k

f xw
wf x w f x

λ
λ λ λ λ=

∂ |∂
= × =

∂ | + − − | ∂
∑

 (3)

2

12 1 2 2

( )1
: 0,

( (1 ) ( 1 )

T
k

k k k

f xw
wf x w f x

λ
λ λ λ λ=

∂ −1|∂ −
= × =

∂ | + − − | ∂
∑

(4)



Journal of Proteomics & Bioinformatics  - Open Access
 Research  Article       JPB/Vol.2/May 2009

J Proteomics Bioinform Volume 2(5) : 202-216 (2009) - 206
 ISSN:0974-276X   JPB, an open access journal

1 2

1 1 2

( ) ( )
: 0.

( ) (1 ) (

T
k k

k k k

f x f x
w wf x w f x

λ λ
λ λ=

| − −1|∂
= =

∂ | + − −1|
∑

                     (5)

Finding a simple analytical solution for these equations
is not possible and the need for numerical methods is obvi-
ous. Newton Raphson method can be used in such cases.
However, the applicability of this method becomes harder
in multidimensional settings. The slow speed and lack of
convergence guaranty are known issues with this method.
Often an iterative synchronization scheme such as the Ex-
pectation Maximization (EM) algorithm (Dempster et al.,
1977) is used to solve score equations. We now describe
how to use the EM algorithm in this specific context.

Details of the EM Algorithm for a Mixture of Location-
Shifted Poisson Model

EM algorithm is originally designed for likelihood prob-
lems with “missing data”. In our context of fitting a mix-
ture model, the group level indicators G can be considered
to be missing. More specifically, let for each Xk as described
above, Gk denotes which component (first or second) of the
mixture distribution (1) generated Xk. The EM procedure
iteratively maximizes ( , ) ( ( , )mQ x E X G Xθ θ θ| = | |

, )mx θ=  where 1 2( , , )m m m mwθ λ λ= is the current value of
the parameters at step m where ( , )X Yθ | is the full data
log-likelihood

1
1

( , ) ( 1) log ( ) ( 2){
T

k k k
k

X Y I G f X I Gθ λ
=

| = = | + =∑

2log ( 1 )}kf X λ− | .

The iteration 1m mθ θ +→  is defined through the follow-
ing:
1. E-step: Compute ( , )mQ xθ θ
2. M-step: 1 arg max ( , ).m mQ xθθ θ θ+

∈Θ= 

By direct calculation we can show that the parameter es-
timates updating scheme in this problem is given by :
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Note that these expressions can be written in terms of the
available grouped data  *{ ( ) : , 0, , }ay x x a i i i= + =  repre-
senting the intensities of features separated by one Da
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Choosing the initial values and convergence criterion are
also taken into consideration when implementing the EM
algorithm. Following one of the methods described by Karlis
and Xekalaki (2003) , the initial values are taken to be:

.5,w =

1
2

2
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1max ,0.01 ,
2

x s xλ
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2

x s xλ   = − + − +    

where x  is the mean and s2 is the variance of the grouped
data x with frequency y(x), for *, 0, , ax a i i i= + =  . These
formulas are slightly different from the ones stated in Karlis
and Xekalaki (2003) since the second Poisson component
is location shifted. These are basically the method of mo-
ments estimates of 1λ and 2λ  assuming w = 0.5. The itera-
tive EM procedure is stopped when 1max ,{ m mw w+ − 

1
1 1 ,m mλ λ+ −  1 4

2 2 10}m mλ λ+ − −  < .

Checking the Adequacy of Model Fit

After fitting the above mixture model to a collection of
adjacent features or binned clusters of features

*{ ( ) : , 0 }ay x x a i i i= + =  , we check the adequacy of the
model fit by a bootstrap test. In particular, we conduct the
following tests of hypotheses to determine the existence of
a isotopic pattern and consequently designate a
monoisotopic peak.

Testing the Isotopic Pattern

We consider the problem of testing the goodness of fit of

*
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a location shifted Poisson model applied to the intensity
values of a cluster of adjacent m/z values separated by 1
Da. More formally, the null hypothesis we are testing is
that

H01: The intensities y(x) The intensities
*, 0 ax a i i i= + =   follow a mixture of location-shifted

Poisson model ( )1 2. , ,f w λ λ given by (1).

To this end, we propose four omnibus tests, using the
Kullback-Leiber (KL) distance (Kullback and Leibler, 1951;
MacKay, 2003), the Hellinger distance (Eslinger et al., 1995;
Karlis and Xekalaki, 1998), the Kolmogorov-Smirnov (KS)
supremum distance (Chandra, 1997) and the L2 distance
(MacKay, 2003). The basic idea behind each of these tests
is to compare the estimates of the probability mass func-
tions obtained from model (1) with their empirical (non-
parametric) counterparts. Statistical significance of each of
these test is determined by p-values computed using a para-
metric bootstrap scheme.

If H01 is rejected, then we conclude that the above collec-
tion of adjacent features does not follow a isotopic pattern
and hence does not contain a isotopic peak. Generally speak-
ing, for subsequent applications, these features are removed
from further analysis with the spectra. If H01 is not rejected,
we proceed to test whether there is a single component in
the location-shifted mixture. If the second hypotheses is
rejected then we conclude that there are two overlapping
isotopic distributions (due to deamidation) resulting in more
than one isotopic peaks and the locations of the peaks are
determined by the modes of the two mixture distributions.

The solution that we describe above will be divided into
the following algorithmic steps:

Step 1: (Fit Model)
Obtain estimates of 1 2,  and  w λ λ using the EM algorithm

as described in the previous subsection.

Step 2: (Compute Test Statistics)

Compute a goodness of fit test statistics measuring the
closeness between the empirical distribution and the para-
metrically fitted distribution in Step 1.

We propose the following four test statistics that could be
used in this step. However, please see our recommendation
in the simulation results subsection 3.4.

1. The Kullback-Leiber test

 
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0 1 2
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2. The Hellinger test
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3. The Kolmogorov-Smirnov test
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4. The L2 distance test
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Step 3: (Resample)

Generate bootstrap samples *,1kX k T≤ ≤ , of size
*

1
( )

ai

i
T y a i

=

= +∑ from the fitted mixture Poisson

  ( )1 2. , ,f w λ λ and group them into frequency table.

Step 4: (Calculate Bootstrapped Test Statistics)

Refit the mixture of location-shifted Poisson model to the
bootstrapped data to obtain bootstrapped parameter esti-
mates   * * *

1 2,  and w λ λ  and the bootstrapped test statistics *
j∆

using the same formulas as ,1 4j j∆ ≤ ≤ , but with the
bootstrapped data instead of the original data   ( )1 2, ,f i w λ λ

by   ( )* * *
1 2, ,f i w λ λ  and  ( )f i  by  { }* *( ) ( /kf i I X i T= =∑ .

Step 5: (Calculate P-values)

Repeat Steps 3 and 4, a large number of times, say B,
leading to the B values of the bootstrapped test statistics

* *
,,1, , ;1 4j j B j∆ ∆ ≤ ≤ . Now we compute the p-value for

each test statistic j∆  as the proportion of times the corre-
sponding bootstrapped test-statistic values exceed the origi-
nal value of the test statistic

 *
,

1

1 ( ),1<=j<=4
B

j j b j
b

p I
B =

= ∆ ≥∆∑

Step 6: (Draw Conclusions)

Reject H01 (using the jth test) if p α≤ , where α is the
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desired nominal level.

Identifying the monoisotopic peaks

If the hypothesis H01 is not rejected, we try to determine
if there was a single component in the location-shifted mix-
ture Poisson i.e. it had only one isotopic distribution. In
other words, we test the second null hypothesis H02 : w = 1.
If H02 is not rejected, then we conclude that there is one
isotopic distribution and the monoisotopic peak is the mode
of single Poisson distribution. If H02 is rejected, then we
conclude that there are two isotopic peaks (the later being
the deaminated from the former).

Simulation Studies

The effectiveness of inferential procedures introduced in
the previous section is studied in this section through simu-
lations. Three separate simulation studies are carried out.
The objective of the first simulation is to investigate the
sampling properties of the parameter estimates. The objec-
tive of the second and third simulations is to determine the
sizes and powers of the proposed goodness-of-fit tests, re-
spectively, and evaluate their relative merits.

Sampling Properties of the Parameter Estimates

A simulation study is presented for evaluating the bias
and standard deviation for the estimated parameters for two
different total intensity sizes T = 2,000 and 10,000 respec-
tively. As before, T denotes the sum of the intensities of the
clusters of successive features and thus these choices of T
are realistic. For each T , the distribution of the data is cho-
sen to be a locationshifted mixtures of Poisson, with mix-
ing parameters w and the mean parameters 1λ  and 2λ , re-
spectively. This means that approximately 100%w× of the
data are generated from Poisson distribution with param-
eter 1λ and the remaining (1 ) 100%w− ×  of the data are
generated from Poisson distribution with parameter 2 1λ + .
We report the results for three sets of values of these pa-
rameters. For each of the data set generated from the mix-
ture distribution, the maximum likelihood estimates are
obtained for the three parameters, 1,w λ  and 2λ , via the EM
algorithm described in Section 2. The estimates of the bias
and standard deviation are obtained by 5,000, Monte Carlo
iterates for each setting.

Empirical Sizes of the Proposed Tests

In the second simulation, the empirical sizes of the four

tests (the KL test, the Hellinger test, the KS test and the L2

distance test) are investigated. The data is generated using
the same scheme as in Simulation 1. For the sake of brev-
ity, we only report the results (Table 3) the values for

1 20.5,  1,  5w λ λ= = = . We compute the sizes of the tests
by the empirical proportions of times the null hypotheses
are rejected by each of these tests in 5,000Monte Carlo
samples for each total intensity size.

Empirical Powers of the Proposed Tests

In order to study the effectiveness of our method, a power
analysis is conducted. It can be seen from the second simu-
lation (see, Section 3.4 or Table 3), all four tests maintained
the prescribed significance level. As a result, all of them
are included in our power study. The power of each of the
four tests is evaluated at two types of alternative hypoth-
esis models by Monte Carlo Simulation.

In the first alternative, we study the empirical power when
there are additional gross errors in the two-component lo-
cation-shifted mixture of Poisson model. More precisely,
the data are generated from a contaminated distribution
given below:

1 2(1 ) ,  0 1,F Fδ δ δ− + ≤ ≤         (6)

where F1 is the null model of a two-component location-
shifted mixture of Poisson and F2 is a uniform distribution
on the set of integers between 0 and 4. In effect, part of the
data came from the F1 and the rest of the data were gener-
ated from the contaminating uniform distribution. Note that
under no contamination, i.e., 0δ = , one recovers the null
model. We vary the contamination factor δ in [0,1].

In the second alternative, the data are generated from a
discretized (rounded) version of a normal distribution, which
is supported on integers { }0, K with probabilities pro-
portional to

1 1
2 2 ,x

x x
p

λ λ

λ λ

   + − − −   
= Φ − Φ   

   
   

                         (7)

for 0,1, ,x K=  . Here λ  is a parameter of the distribution
and K is a large enough integer such that 410xp −<  for x > K.

Results for the Simulation Study

Consistent convergence (statistical consistency) to the true
values with increasing total intensity is seen in Simulation
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1. The results are illustrated in Table 1. For all the param-
eters: w, 1λ and 2λ  the bias decreases as total intensity in-
creases. In order to investigate the asymptotic (as T → ∞ )
standard deviation, we report the empirical standard devia-
tions multiplied by the square root of the total intensity T
and in all cases they seem to be stabilized.

In Simulation 2, the empirical sizes of the four tests are
investigated. Table 2 shows the empirical sizes for the four
tests, given the Monte Carlo size of 5,000, the number of
bootstrap samples B = 1,000 and the commonly used nomi-
nal significance levels of α = 0.05 and 0.01, respectively
Convergence to the nominal sizes with increasing total in-
tensity is observed in these simulations for all the tests.
Overall, the size of all the tests remains approximately equal
to the α.

As stated before, in the third simulation, we study and

compare the empirical powers of the above tests against the
two alternative hypotheses. We used the same values of T ,
B, Monte Carlo size and the nominal level α as in Simula-
tion 2. The results for the first and the second alternative
hypotheses are reported in Tables 3 and 4, respectively.

For the first alternative the data is generated following
model (6). We investigate the powers for a set of null pa-
rameter values 10.8, 3w λ= =  and 2 10λ =  for the location-
shifted Poisson distribution. The contaminating distribution
is discrete uniform on the set of integers from 0 to 4 and a
range of contaminating weight factor δ (=.05 to .4). The
results are reported in Table 3. The power function of all
the tests increase monotonically in δ (as the alternative
moves further and further away from the null hypothesis)
reaching one in all cases for forty percent contamination.
Furthermore, the power curve for T = 10000 lies above the
power curve for T = 2000 which is to be expected from the

Table 1: Bias and standard deviation of the EM estimators. These are empirical calculated by Monte Carlo iterations of size
5000 each.

Total intensity Estimated size of tests (standard error) 
T KL Hellinger KS L2 

α = .05 
2000 .051 .048 .052 .054 

10000 .050 .046 .051 .051 
α = .01 

2000 .009 .009 .011 .012 
10000 .011 .010 .010 .011 

theory. The power of the KL test appears to be the largest in
all cases making it the recommended choice. The Hellinger
tests comes in a close second.

For the second alternative, Table 4 shows the result of the
empirical power of the same four tests against different val-
ues of the alternative model parameter λ ( = 0.5, 1, 5, 10,
30, 50, 100). Unlike the previous scenario, the null hypoth-
esis is not embedded in H0 and λ does not measure a ‘dis-
tance’ from the null. As a result, the power function show a
non-monotonic pattern which eventually becomes mono-
tonic for large λ. Once again, the KL and the Hellinger tests
take the first two places and display very decent power in
most cases. Once again, the power of each test increases
with the total intensity T.

Based on these simulation results, we use the KL test for

Table 2: Size of Kullback-Leiber (KL) test, Hellinger test,
Kolmogorov-Smirnov (KS) test and the L2 distance test each
with nominal significance level of α = .05 and .01, respec-
tively, and bootstrap resample size B = 1000. These are em-
pirically estimated using Monte Carlo size of 5000 each;
the standard errors of estimation do not exceed .003 in any
case. The null parameters were w = 0.8, 1λ = 3, 2λ  = 10.

Parameter values Total intensity Bias T ×  Standard error 
1 2( , , )w λ λ  T w 1λ  2λ  w 1λ  2λ  

(.5,1,5) 2000 .000 .000 .002 .617 1.995 3.805 
10000 .000 .000 .002 .614 1.990 3.801 

(.2,1,8) 2000 .000 .002 .002 .419 2.721 3.373 
10000 .000 .000 .000 .420 2.731 3.340 

(.8,3,10) 2000 .000 .000 − .002 .472 2.291 9.186 
10000 .000 .000 − .001 .470 2.274 9.031 
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T = 2000 T = 10000 Alternative 
Parameter 

δ KL Hellinger KS L2 

Total intensity 

KL Hellinger KS L2 

α = .05 
.05 .100 .086 .074 .083 .371 .300 .253 .281 
.1 .288 .233 .171 .207 .962 .924 .875 .916 

.15 .629 .528 .412 .495 1 1 .999 1 
.2 .894 .828 .719 .804 1 1 1 1 

.25 .988 .973 .921 .965 1 1 1 1 
.3 .999 .997 .998 .996 1 1 1 1 

.35 1 1 .999 1 1 1 1 1 
.4 1 1 1 1 1 1 1 1 

α = .01 
.05 .019 .023 .017 .019 .152 .113 .097 .097 
.1 .093 .087 .055 .073 .874 .789 .625 .772 

.15 .349 .294 .178 .256 .999 .999 .988 .999 
.2 .709 .624 .427 .579 1 1 1 1 

.25 .934 .896 .712 .879 1 1 1 1 
.3 .991 .987 .926 .948 1 1 1 1 
.4 1 1 .999 1 1 1 1 1 

Table 3: The estimates of power for Kullback-Leiber test, Hellinger test, Kolmogorov-Smirnov test and the L2 distance test
each with nominal significance level of α = .05 and .01, respectively and bootstrap resample size B = 1000. These are
empirically estimated using Monte Carlo size of 5000 each. The data are generated using the contaminated alternative model.
The null parameters were w = 0.8, 1λ = 3, 2λ  = 10.

T = 2000 T = 10000 Alternative 
Parameter 

λ KL Hellinger KS L2 

Total intensity 

KL Hellinger KS L2 

α = .05 
.5 .732 .770 .865 .857 .794 .782 .876 .877 
1 .997 .989 .990 .994 1 .998 .996 .996 
5 .154 .155 .065 .071 .176 .171 .023 .022 

10 .379 .369 .069 .198 .296 .279 .041 .076 
30 .770 .741 .212 .564 .756 .740 .252 .563 
50 .998 .972 .378 .941 .999 .999 .908 .998 

100 1 1 .506 .999 1 1 .970 1 
α = .01 

.5 .493 .522 .591 .584 .645 .630 .671 .663 
1 .983 .955 .946 .972 .999 .997 .996 .996 
5 .068 .068 .015 .020 .083 .076 .004 .005 

10 .222 .228 .030 .081 .199 .178 .012 .049 
30 .634 .593 .073 .365 .684 .663 .105 .439 
50 .970 .936 .141 .852 .999 .999 .672 .997 

100 1 .997 .204 .995 1 1 .792 1 

Table 4: The estimates of power for Kullback-Leiber test, Hellinger test, Kolmogorov Smirnov test and the L2 distance test
each with nominal significance level of α = .05 and .01, respectively and bootstrap resample size B = 1000. These are
empirically estimated using Monte Carlo size of 5000 each. The data are generated using the normal alternative model.
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data analysis to be described in the next section.

Analysis of Plasma Data

We consider a previously published data of human plasma
samples (Mantini et al., 2007) collected from thirty healthy
human subjects (age 28-40 years) for the demonstration of
our peak detection method. The original unprocessed data,
as expected, was contaminated by baseline drifts and back-
ground noises. The plasma data was baseline corrected us-
ing the bslnoff function (with method = loess and bw = .025)
in PROcess package mentioned earlier. A schematic over-
view of detecting monoisotopic peaks in each sample is
given in Figure 1.

Summary of Peak Detection Results

In order to avoid degeneracy in the parameter estimation
process and for greater biological reliability we only con-
sider clusters of features each with at least four members.
From the results discussed in the previous section the KL
test appears to be the most superior in the simulation stud-

ies, and hence it is used to test and identify the monoisotopic
peaks of a MALDITOF data from plasma samples. Below,
we report the identified monoisotopic peaks for the samples
and compare the performance of our method with another
peak detection method due to Mantini et al., (2007). For
brevity of presentation, we report the results of five selected
spectra. The conclusions are similar for other spectra and
can be found on the supplementary web-site
(www.susmitadatta.org/Supp/MP).

Since the noise threshold in the denoising step of the pre-
processing of spectra is user selectable, we perform a sen-
sitivity analysis of our results by selecting different thresh-
old values Table 5 shows the number of monoisotopic peaks
detected on each sample or subject for different denoising
cutoff. For example, the number of monoisotopic peaks
detected in Spectrum 1 are 18, 13 and 13 for thresholds h =
100, 150 and 200, respectively. The sixth and the seventh
column of Table 5 report the common monoisotopic peaks
within each sample for varied denoising cutoff h. For ex-
ample, there are eleven detected monoisotopic peaks in
Spectrum 1 that are in common when applying our proce-

 Schematic representation for monoisotopic peak detection.
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dure with h = 100 and h = 150. On the other hand, there are
eight common monoisotopic peaks between noise thresh-
olds of 100, 150 and 200 in Spectrum 1. Overall, there is
decent amount of overlaps (at least 60%) between the re-
sults run at thresholds of 150 and 200. This percentage is
considerably lower between h = 100 versus 150 or 200.
Based on this sensitivity analysis, we would recommend
using h = 200 for this dataset.

We also keep track the number of features at each step
and we report the number of them when the initial prepro-
cessing and the binning are done. For example, the number
of features in subject after preprocessing is (2nd column,
Table 5) and 454 after binning (3rd column, Table 5). Num-
ber of candidate isotopic distributions in each spectrum is
reported in the 4th column.

Biochemical Validation

We compare the list of monoisotopic peaks detected by
our method with the theoretical peptides generated by in
sillico digestion of the 69 human plasma proteins mentioned
in Mantini et al., 2007 (http://www.biomedcentral.com/con-
tent/supplementary/1471-2105-8-101-s5.pdf). These have

been chosen by them as they can be obtained from the Hu-
man Plasma Proteome database (HPPP) (Omen et al., 2005)
and can be detected on a MALDI-TOF platform in the m/z
range of 5-20 kDa (Hortin, 2006). For the initial character-
ization of the peptide fragments, we have used in sillico
trypsin digestion to obtain the peptide fragments of the can-
didate proteins. We have used “PeptideMass” tool (http://
ca.expasy.org/tools/peptide-mass-ref.html) by Wilkins et al.,
(1997) and Gasteiger et al., (2005) for this purpose. For the
search, we included only masses of unmodified cysteines.
We have allowed peptide fragments off masses greater than
1500 Da, maximum number of five missed cleavages and
included all post-translational modifications.

We consider all the peptide fragments of all these pro-
teins and match them with the detected monoisotopic peaks
only from the five samples individually. As we have binned
the data only to represent the integers associated with the
m/z values we round all the theoretical masses obtained
from the in sillico digestion as well. We also use the accu-
racy level of up to 0.5. The percent of true matched peaks
from each of the five samples amongst the monoisotopic
peaks selected by our algorithms are 60%, 50%, 53%, 55%

Number of features 
after each step Noise 

Threshold 
h 

Spectra 

Baseline 
correction 

and denoising 
Binning 

Number of 
clusters of 
contiguous 

features 

Number of 
monoisotopic 

peaks 
detected 

Common 
monoisotopic 
peaks using 
different h 

Number 
of 

peaks 
detected 
by the 

LIMPIC 
software 

1 922 454 19 18 
2 1903 957 25 22 
3 1477 758 27 27 
4 1762 872 25 25 

100 

5 1692 837 16 16 
h = 100 
and 150 

1 748 368 13 13 11 
2 1507 763 21 20 7 
3 1130 570 20 20 11 
4 1419 698 22 20 10 

150 

5 1324 658 18 18 7 
h = 100 
 150,200 

h = 150 
and 200 

1 646 320 13 13 8 10 206 
2 1211 606 18 18 4 10 226 
3 968 489 17 17 7 12 248 
4 1196 583 19 18 7 11 198 

200 

5 1169 577 16 16 6 8 201 

Table 5: Summary of peak detection results for five plasma spectra. Some numbers are boldfaced for side by side compari-
son between our method and LIMPIC.
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and 56%, respectively, for the five spectra reported earlier.
Note that the data is collected from a linear MALDI-TOF
instrument and the sensitivity of such platforms are gener-
ally low. Also, sample preparation did not involve
immunoaffinity based methods to control the interference
of highly abundant proteins like albumin. Considering all
that, the performance of our method seems to be quite sat-
isfactory.

Comparisons with Other Methods

We compare the number and the quality of the detected
peaks by our method with that using the LIMPIC software
developed by Mantini et al., (2007). As expected, our method
detected a much fewer number of peaks compared to
LIMPIC Table 5, rightmost column). This is presumably
due to the fact that we detect only the monoisotopic peak
amongst all the peaks in a isotopic distribution and the other

procedure detects more local peaks. Figure 2 demonstrates
this phenomena clearly where we show four isotopic distri-
butions (taken from different samples). In each case, there
are several features (solid lines) declared as “peaks” by
LIMPIC and only one monoisotopic peak (denoted by a
carat symbol on the horizontal axis). Note that in each case,
the monoisotopic peaks detected by our method attain the
maximum intensities on each extracted isotopic distribu-
tion.

We have also attempted to apply a proprietary software
implementation of Breen (2000, 2003). However, their pro-
cedure is integrated with the entire preprocessing routine
which requires the user to specify a number of parameters.
In addition, the software requires specification of various
types of MALDI preparation all of which are not available
for this dataset. We have made several abortive attempts to
detect peaks using their software for this dataset by select-

Figure 2: An illustration of the comparative nature of the two peak detection . algorithms as applied to four clusters of
contiguous features of multiple spectra. A smoothed version of the intensity values is displayed. The location of the
(monoisotopic) peak detected by our method is indicated by a carat and a solid vertical line; the locations of the multiple
peaks detected by the LIMPIC software are denoted by dashed vertical lines.
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ing various combinations of parameters.

It is natural to believe that more intense peaks are more
sensitive for a biomarker study. Identification of chemically
valid lesser number of peaks is less prone to the difficulty
arises with analysis of large number of variables and a much
lower sample sizes without loosing important information.
Also, lesser numbers of intense peaks are suitable to clas-
sify samples using much simpler classification algorithms
like LDA or QDA. We plan to pursue the comparative study
in a classification context in a follow-up paper.

Discussion

Peak detection in a mass spectra is an important step in
applying proteomic profiling to biomedical research. As for
example, the detected peaks can be subsequently investi-
gated in discovering relevant biomarkers. Also it serves as
a feature reduction tool so that further statistical and data
analytic techniques can be used on a sample of mass spec-
tra. In addition, it separates true signals from the background
noise. This is imperative since a mass spectrum is inher-
ently noisy.

While most attempts in the past concentrates on separat-
ing large signals (after baseline correction and sometimes
after local standardization) from small intensity noise back-
ground, this does not, in general, guarantee the quality of
the detected peaks. Not all large signals are biodoes not, in
general, guarantee the quality of the detected peaks. Not all
large signals are biochemically viable; in addition, in or
around a true monoisotopic peak, there may be other large
secondary signals. Thus, care needs to be taken in order to
identify only the monoisotopic peaks in a spectrum. On one
hand, this ensures maximum filtration and data reduction.
On the other hand, the resulting channels (features) are likely
to provide higher specificity in a case-control or classifica-
tion study. We are planning to investigate this with our peak
detection technique in a future manuscript.

We present a novel approach for detecting the
monoisotopic peaks, where we considered fitting a class of
mixture location-shifted Poisson models with two compo-
nents. Unlike previous attempts, our procedure is local and
automatic in the sense that it works with each individual
spectrum without requiring detailed information regarding
specific settings of the spectrometer, the matrix elements
and so on. We utilize statistical methods rather than data-
base information in estimating parameter in the model. In

addition a call is made using formal statistical tests with a
specified type 1 error rate rather than ad hoc cutoffs.

As demonstrated with simulated and real data, the meth-
odology the presented here is implementable and produces
reasonable answers in a wide variety of settings. In addi-
tion, only high quality peaks are detected in a spectrum
which might improve mass spectrometry based classifica-
tion error rate of normal versus diseased samples. We plan
to explore this elsewhere.

Future Perspectives

Our monoisotopic peak detection method identifies a
much smaller number of peaks (compared to other peak
detection methods) which are unique peaks in isotopic clus-
ters of peptide molecules. These monoisotopic peaks are
expected to perform much better in terms of classification
accuracy in a case control study. As a preliminary observa-
tion we have attempted to classify mouse amniotic fluid
data (Datta et al., 2008) for a case control study with the
monoisotopic peaks determined from our method and also
by LIMPIC (Mantini et al., 2007). The area under the ROC
(Receptor Operating Curve) for our peaks were much greater
and also the overall classification accuracy (results not
shown) while using these features in a SVM (support vec-
tor machine). However, it is to be noted that the classifica-
tion performance depends on particular classification algo-
rithms, the tuning parameters and also cross validation pro-
cedures. Therefore, we are currently working on an exhaus-
tive study on the comparative classification performances
and we will report the results elsewhere.
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