A Role for Vanadium in Ascidians and in Marine Algae

Dieter Rehder*

Department of Inorganic and Applied Chemistry, University of Hamburg, Germany

INTRODUCTION

Vanadium is – next to molybdenum – the second-to-most abundant transition metal in sea water. Oxygenated sea water commonly contains 24.45 µM of vanadate H$_2$VO$_4^-$ (and is thus – next to molybdenum – the second-to-most abundant transition metal in sea water) with the levels mainly fluctuating with the season. Depletion by about 60% can occur as reduction to VO$_2^+$ takes place which forms a sparingly soluble hydroxide, VO(OH)$_2$, that is readily absorbed by particulate organic matter [1]. Consequently, the factors influencing the occurrence of vanadium are redox conditions (such as dissolved O$_2$ and Fe$^{2+}$, the presence of NH$_3$ and the factors influencing the occurrence of vanadium are redox conditions) readily absorbed by particulate organic matter [1]. Consequently, the factors influencing the occurrence of vanadium are redox conditions (such as dissolved O$_2$ and Fe$^{2+}$, the presence of NH$_3$ and S$^{2-}$, and – of course – its uptake by marine organisms. Vanadate is mainly taken up by marine algae, the most prominent one being brown-knoted wrack (also known as rockweed) Ascophyllum nodosum, (Figure 1), by ascidians and, to some extent, also by some Polychaeta fan worms [2]. The significance of vanadium as an essential element in these organisms will be addressed.

VANADIUM IN ASCIDIANs

In 1911, Henze discovered vanadium in the blood cells (the coelomic cells; singlet ring cells and vacuolated amoebocytes) of the Mediterranean seasquirt (ascidian) Phallusia mammilata [3]. The vanadium compound present in these cells actually is hydrated vanadium in the oxidation states of (predominantly) high-spin +III, such as V6(H$_2$O)$_2$; the counter ion commonly is H$_2$SO$_4^-$: Vanadium is taken up by the ascidians (Figure 2) in the form of vanadate. After uptake, it migrates – via phosphate channels – into the cytoplasm of the organism in the form of H$_2$VO$_4^-$. Concomitant reduction takes place, which apparently occurs in two steps, i.e. (1) reduction of vanadate (V) H$_2$VO$_4^{-}$ to oxidovanadium (IV) VO$^{2+}$ by NADPH$^-$ and (2) reduction of VO$^{2+}$ to (hydrated) V$^{+}$ by cysteinylmethionine (CysMe) (Scheme 1) [4]. In addition, vanadium accumulating ascidians dispose of an enhanced capacity to metabolize glucose-6 phosphate (G6P); the activity of G6P-dehydrogenase is markedly elevated when compared to ascidians with low accumulation rates [5]. The intermittently formed VO$^2^+$ binds to the lysine NH$_2$ residues of the vanabins. Vanabins are lysine-rich polypeptides of about 10 thousand kDa, attaining a bow-shaped conformation, with four a-helices connected by nine disulfide bonds [6-8].

![Figure 1: Examples for algae that produce hypohalous acids: Left Corallina officinalis, right Ascophyllum nodosum, the alga where the vanadate-dependent haloperoxidase was originally characterized by Vilter in 1983.](image)

Scheme 1: (a) The step-wise reduction of vanadate (V) to vanadium (III). Cysteine-rich proteins (associated with the oligopeptide vanabin2) are involved in this process. (b) Section of vanabin2, illustrating the binding of VO$^2^+$ to a lysine residue.

The amount of vanadium accumulated by ascidians strongly differs. An extraordinary degree of vanadium – up to 350 mM and hence the about 105 fold of vanadate in sea water (~ 35 nM) – can be absorbed. In the intestinal lumen, the concentration can reach 0.7 mM. This particularly effective accumulation of vanadium, occurring in the greater part of the ascidians, apparently is supported by bacterial genera such as Pseudomonas and Ralstonia (in the tissues of the branchial sacs of the ascidians), and Treponema and Borelia (in the intestines) [9-12] – a fact which is in line with the general ability of certain strains of bacteria from deep-sea hydrothermal vents (such as Pseudomonas vanadium-reductans) that reduce vanadate to vanadium in the +IV (and +III) state, using lactate as electron donor [13].

Correspondence to: Rehder D, Department of Inorganic and Applied Chemistry, University of Hamburg, Germany, Tel: +49 40 42838-6087; E-mail: rehder@chemie.uni-hamburg.de

Received: February 23, 2019; Accepted: March 13, 2019; Published: March 20, 2019

Copyright: © 2019 Rehder D. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
VANADIUM IN MARINE ALGAE

Several species of macro-algae in the marine environment (Figure 2) are able to catalyze the oxidation of the halide X\(^-\) (X\(^-\) = I\(^-\), Br\(^-\), Cl\(^-\)) to hypohalous acid [14-17], as exemplified for the bromide oxidation in eqn. (1). The oxidant employed by these algae is hydroperoxide (H\(_2\)O\(_2\), HO\(_2\)\(^-\)); the oxidation is supported by heme-NO\(_2\) in eqn. (1). The oxidant employed by these algae is hydroperoxide (H\(_2\)O\(_2\), HO\(_2\)\(^-\)); the oxidation is supported by heme-bridging interaction with surrounding water molecules and amino acid residues, cooperating with the active center via hydrogen bonding interaction.

The active site (Figure 3) in all of these algae contains vanadium in an essentially trigonal-bipyramidal environment, in close hydrogen bonding interaction with surrounding water molecules and amino acid residues, cooperating with the active center via hydrogen bonds.

During turn-over, the VHPOs are self-supporting in the sense that they only marginally change their coordination environment. In the course of the reaction, a peroxy intermediate is formed, in which the trigonal-bipyramidal arrangement at the vanadium centre is essentially retained. H\(_2\)O\(_2\) docks to the vanadium centre as hydroperoxide in a monodentate fashion, followed by the releases of one or two proton to form a \(\text{V}^{IV}\)-peroxido and/or -hydro-peroxido intermediate. This intermediate undergoes a nucleophilic attack by the substrate, such as bromide, and finally releases hypobromous acid. The several steps of this sequence are shown in Figure 4.

REFERENCES

