A Hospital-Based Prospective Study on Surgical Antimicrobial Prophylaxis and Incidence of Surgical Site Infections in the Department of General Surgery

Raju Niraula1*, Anuja Devkota2

1Department of Pharmacy, Nargund college of Pharmac, Bangalore, India, 2Department of Medical Sciences, Bangalore, India

ABSTRACT

Introduction: Health Care-Associated Infections (HAI) remain an important public health concern. Among the distinguished HAIs, Surgical site Infections (SSI) contributing to significant increases of mortality and morbidity. Considerable prolongation in the length of hospitalization and added treatment expenses. Wound infections are the commonest hospital-acquired infections in surgical patients. Surgical site infection leads to increased hospital costs, prolonged hospital stays, compromised quality of life. Where appropriate antibiotics at the appropriate time lead to decreases postoperative infection. Moreover, this will reduce the misuse of antibiotics and antimicrobial resistance. Almost 30%-50% of antibiotic in regular practice is used for prophylaxis before and after surgery. However, most of the antibiotics used in prophylaxis are not appropriate hence leading to resistance. Most of the time, the antibiotic is either given at the wrong time or continued for too long.

Aims and objectives:
1. To evaluate the pattern of antimicrobial prophylaxis in general surgery.
2. To evaluate the frequency of post-operative infection.
3. To evaluate the prevalence of surgical site infection.
4. Finding and comparing frequency of risk factors, incidence of SSI, type of antibiotics used.

Results: 180 patient undergone surgery were participated in the study. Majority of the prescription were of females (51.11%) compared to males (48.89%). The incidence of SSI was similar to both male (5.45%) and female (5%) in general surgery Staphylococcus aureus (52%) and Pseudomonas aeruginosa (15.79%) are found to be the most common microorganism causes SSI. Increased chances of infection were due to associated risk factor like DM, HTN, Anaemia eye. Patients with advanced age >50 years) were most susceptible to SS rather than younger age. Infected patient was treated with more than two numbers of antibiotics where non infected with single or double antibiotics. Hospital stays increases with incidences of SSI.

Conclusion: The study clearly concluded about the overuse and inappropriate choices of antibiotics. Hence, our study also suggests following the guidelines for rational use of antibiotics and minimizing the inappropriate antibiotic use is the best way to minimize the chances of SSI. The health centre needs to establish prophylactic antibiotics tenet which ought to be open and available by means of each member of the surgical team. The medical checklist needs to be practised successfully. Frequent audit of prophylactic antibiotic use is wanted to enhance right practices. Surgeons must adhere to specific antibiotics guidelines.

Keywords: Ethno Surgical Antimicrobial; Surgical Site Infections; Antibiotics; Prophylaxis
INTRODUCTION

Health care-related infections is one of the principal public health challenges and among the distinguished HAIs, Surgical Site Infections (SSI) contributing to significant increases of mortality and morbidity, considerable prolongation in length of hospitalization and added treatment expenses. Wound infections are one of the commonest healthcare-associated infections in the department of surgery. They bring about increased antibiotic usage, extended treatment costs and hospitalization days. Multiple uses of antibiotics decrease the wound infection, however, excessive uses of antibiotics leads to antimicrobial resistance. Surgical antibiotic prophylaxis is defined as the use of antibiotics to prevent infections at the surgical site. It must be clearly identified from the use of antibiotics prior to the surgery and after the surgery to prevent infections [1].

First surgical antibiotics prophylactic experimented on pigs about 40 years ago. This experiment shows effective antibiotic therapy within three hours prior to surgery. After this several research conducted on humans and animals, which shows similar results on preventing infection after antibiotics therapy after prophylactic therapy. Almost 30%-50% of antibiotic in regular practice is used for prophylaxis before and after surgery. Proper use of antibiotics should be used as per guidelines. If not used proper according to the guidelines leading to resistance. Most of the time, the antibiotic is either given at the wrong time or continued for too long. Controversy stays as to the period of prophylaxis and additionally as to which precise surgical techniques ought to receive prophylaxis [2].

SSI CLASSIFICATION

According to the Centers for Disease Control and Prevention (CDC)'s guideline, SSIs are separated into three types, depending on the depth of infection penetration into the wound (Figure 1).

Figure 1: Types of SSI relating to infection penetration depth (Pear, 2007).

There are 3 types of SSI

Superficial incisional infection

Superficial incision infection defined as a surgical site infection that occurs within 30 days of surgery and involves only the skin or subcutaneous tissue of the incision, and meets at least one of the following criteria [3].

- Purulent drainage from the site of incision
- Organisms isolated from an aseptically obtained culture of fluid or tissue
- At least one of the following signs or symptoms of infection - pain or tenderness, localized swelling, redness or heat

Deep incisional surgical site infections

Deep incision surgical site infections must meet the following three criteria: it occurs within 30 days of procedure or one year in the case of implants and this involves deep soft tissues, such as the fascia and muscles.

Besides deep incision surgical site infections may involve any of the following criteria:

- Purulent drainage from the incision but not from the organ/space of the surgical site.

A deep incision spontaneously dehisces or is deliberately opened by a surgeon when the patient has at least one of the following signs or symptoms - fever (>38°C), localized pain or tenderness - unless the culture is negative. An abscess or other evidence of infection involving the incision is found on direct examination or by histopathology or radiological examination. Diagnosis of a deep incision SSI by a surgeon [4].

Organ/Space SSI

In Organ/Space SSI occurs within 30 days after the operation if no implant is left in place.

Sources of infection

Sources of infection are primarily from a community or endogenous source

Endogenous factors or sources of bacteria:

Co-existing infection in other site of body
Skin
Bowel

Nature and site of operation (Clean, Clean-contaminated, contaminated, and Dirty)

Exogenous factors or sources of bacteria

Operating team–related – Comportment; Use of impermeable drapes and gowns; Surgical scrub.

Operating room–related - Traffic control; Cleaning; Air Surgical wound infections are also strongly influenced by the risk factors related to patients - extremities of age, obesity, diabetes mellitus, smoking habit, Coexisting infection at other site etc [5].

Etiological agents

Etiological agents commonly are bacteria, viruses, fungi and parasites. Infections can be obtained from one to another individual within the health facility (cross-contamination) or may be caused by the affected person’s own flora (endogenous contamination). A few organisms may be acquired from recently infected inanimate items from another human source (environmental contamination). According to data collected from national nosocomial infection surveillance system, most commonest SSIs is caused by Staphylococcus aureus, Coagulase-negative Staphylococci (CoNS), Enterococcus spp. And Escherichia coli remains the most frequently isolated pathogens during the study. 8 Additionally, nosocomial blood infections are frequently caused by Gram-positive organisms including Coagulase-negative Staphylococcus, Staphylococcus aureus, Enterococci 13, 14 and these microorganisms nearly always represent true bacteremias such as E. coli and other members of the Enterobacteriaceae, Pseudomonas aeruginosa, and Streptococcus pyogenes [6].

Prophylactic antibiotics

Prophylactic antibiotics lower the chance of infection and constitute vital components of most beneficial control to prevent infection to the surgical patient. So errors in antimicrobial prophylaxis for patient undergone surgery are one of the most frequent types of medication errors in hospitals. The antibiotics selected for prophylaxis must cover the expected pathogens responsible for the infection, should achieve adequate tissue levels during operation, cause minimal side effects and be relatively inexpensive [7].

An appropriate antibiotic should be used prophylactically when needed. Choice of antibiotic depends on the type of surgery, area of surgery and etiological agents. Antibiotics should be used precisely according to patient wound types and patient physical conditions. Consistent with the national clinical guideline, Prophylactic antibiotics are highly recommended for Transurethral resection of the prostate, Caesarean section, Appendectomy, Colorectal surgical procedure, and Arthroplasty surgery which is the main causes of morbidity and mortality among patients undergone surgical procedure. Moreover, increases the medical institution costs and duration of hospital stay [8].

Study criteria

Inclusion criteria:
Patient undergone surgery
Patient of age above 18 years
Patient who are willing to participate in the study.

B) Exclusion criteria:
Surgery where there is no need for prophylactic antibiotics.
The post-operative follow up was missed.
Pregnant and nursing mother.
Psychiatric patient.

MATERIALS AND METHODS

A descriptive, prospective and hospital-based study was conducted in Jayanagar General Hospital, Bangalore in department of general surgery over a period of 6 months, after obtaining the clearance and approval from the Institutional Ethics Committee [9].

Statistical analysis

Descriptive statistics is done by measuring different proportions. statistical measurement was done in SPSS trial version 24.0. Graphical representation was done in using Microsoft Excel [10].

RESULTS

Patient demographics

A total of 180 patients were enrolled in the study,who satisfies inclusion and exclusion criteria. , 88 (48.89%) were males and 92 (51.11%) were females. majority of patient were found under the age group of 41-50 years 59(32.78%) followed by 52(28.89%) patients under 31-40 years; 35 (19.44%) patient under 21-30 years, 22(12.22%) patients under 0-20 (18-20) years, 6(3.33%) patient age under 51-60 years and patient over 60 years, 6(3.33%).among them 56% of patient having no formal education, 16.11% have primary education followed by 13.88% secondary, 11.11% PUC education and 2.77 having degrees and 56.12% patient enroll any of occupation was 88.34% (Table 1).

<table>
<thead>
<tr>
<th>Patient Characteristics</th>
<th>No. of Patients</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender distribution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>88</td>
<td>48.89%</td>
</tr>
<tr>
<td>Female</td>
<td>92</td>
<td>51.11%</td>
</tr>
<tr>
<td>Age distribution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-20</td>
<td>22</td>
<td>12.22%</td>
</tr>
<tr>
<td>Age Distribution</td>
<td>Number of Patients</td>
<td>Percentage</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------</td>
<td>------------</td>
</tr>
<tr>
<td>21-30</td>
<td>35</td>
<td>19.44%</td>
</tr>
<tr>
<td>31-40</td>
<td>52</td>
<td>28.89%</td>
</tr>
<tr>
<td>41-50</td>
<td>59</td>
<td>32.78%</td>
</tr>
<tr>
<td>51-60</td>
<td>6</td>
<td>3.33%</td>
</tr>
</tbody>
</table>

Education Distribution

<table>
<thead>
<tr>
<th>Level</th>
<th>Number of Patients</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>29</td>
<td>16.11%</td>
</tr>
<tr>
<td>Secondary</td>
<td>25</td>
<td>13.88%</td>
</tr>
<tr>
<td>PUC</td>
<td>20</td>
<td>11.11%</td>
</tr>
<tr>
<td>No formal education</td>
<td>101</td>
<td>56.12%</td>
</tr>
</tbody>
</table>

Occupation

<table>
<thead>
<tr>
<th>Occupation</th>
<th>Number of Patients</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculturist</td>
<td>28</td>
<td>15.55%</td>
</tr>
<tr>
<td>Self employed</td>
<td>67</td>
<td>37.22%</td>
</tr>
<tr>
<td>In service</td>
<td>23</td>
<td>12.78%</td>
</tr>
<tr>
<td>House wife</td>
<td>41</td>
<td>22.77%</td>
</tr>
<tr>
<td>None</td>
<td>21</td>
<td>11.66%</td>
</tr>
</tbody>
</table>

Table 1: It shows the Parents Characteristics, number of patients and percentage.

Age distribution and SSI

Increasing age increases the incidence of surgical site infections. Out of these, age(51-60) is 3 out of 6 is 50%, >60 age is 2 out of 6 is 33.33% and age (41-50) is 8% followed by 4 out of 59 patient, 5 out of 52 patient, 2 out of 22, 3 out of 35 (Figure 3).

Table 2: It shows the percentage of Patients and SSI.

Duration of operation to discharge depending upon present of SSI

The length of hospital stay after surgery had increased more than 3 times for the patient with SSI than patient who did not have SSI. It imposes increased cost burden to the patient.
for sensitive *Staphylococcus aureus* and *Pseudomonas aeruginosa*, which were more frequent in women than male. The age-wise distribution of patient, In our study we found that majority of patients belong to the age group of 41-50 years, 31-40 years, and 21-30 years (32.78%,29.89%,19.44%) respectively. Showing that adult patient are more chances for surgical problems like appendicitis, hernia, hydrocele, fissure in ano rather than old one. Similar study was conducted by M.G Gandage et.al showing similar distribution of patient undergoes the surgery. Hign incidence of SSI is associated with DM, DM/HTN, are highly associated with SSI. The incidence of SSI with or without infection shows that patient having 66.01 % more chances of having SSI rather than patient not having associated infection. Study conducted by Zeenet Aktar et al shows that patient with infection is 69.22% more associated with co-existing infection.

shows the hospital stay of patient who developed infection or not developed infection. Tamer Sayed et.al conduct study on antimicrobial study on SSI results shows that the length of hospital stay after surgery had increased incidence more than 3 times for the patient with SSI than patient without SSI. In our study shows that mean day of stay from operation to discharge is 11.85 days(with SSI),4.45(With out SSI). Hospital stay ranges in (9-18 days in patient develop SSI), (4-8 days in patient without develop SSI) shows the incidence of SSI over gender distribution of patient. Almost male and female have similar incidence of developing SSI, out of 88 male patient 10 person develop ,out of 92 patient 9 person develop infection that is 5.55% for male and 5% for female respectively. Corinn langelotz et al reported the incidence of SSI with or without infection shows that patient having 66.01 % more chances of having SSI rather than patient not having associated infection. Study conducted by Zeenet Aktar et. al shows that patient with infection is 69.22% more associated with co-existing infection.

This study helps to find the correlation between plasma drug concentrations and the infection. David C Classen et al where The relation between the timing of antibiotic prophylaxis in clinical practice and the occurrence of surgical wound infection has been well studied. They found that use of antibiotics with in the 2 hour period before incision associated with lowest rate of wound infection and those receive surgery more than 2 hour before have more likely to have chances for infection. In our study 49.44% patient received antibiotics before 1 hour of incision, 25% patient received before 1.5 hours, and 18% patient received before 2 hours and 7.22% of patient receive after 2 hours. Among our results about 92.78% patient received antibiotics before 2 hours .this is rational use of antibiotics pattern and 7.22% received after 2 hours.

CONCLUSION

Hospitalized patient are highly prone to get an infection. Most common is surgical site infection which leads to the prolonged hospital stay, increase cost of therapy, cause morbidity, disability, increase the cost of healthcare and even mortality. Regardless of numerous research and great practice in surgery operating room, use of prophylactic antibiotics, infection still remains the second one most common adverse event happening in hospitalized affected person and a primary source of mortality and morbidity following surgical procedures. The study revealed that most of the antibiotics prescribed is 3rd generation cephalosporin, ceftaxime, ceftiraxone and amikacin is the most commonest antibiotics used in hospital. The study has indicated that some prophylactic antibiotics practices are inappropriate. Two or three antibiotics combination received by patient which is not recommended by any guidelines .prolonged use of post surgery prophylaxis is not recomended. which increases the cost of therapy .patient with diabetes, old age and associated infection is the most common cause developed infection.

REFERENCES

