A Case of Primary Adrenal Tuberculosis - A Diagnostic Quandary

Nakaoka K1, Branch J2, Yamaguchi M3, Ozeki T1, Hazi Y1, Tomino T1, Shimizu H1 and Fujita Y3

1Department of Nephrology, Chubu-Rosai Hospital, Nagoya, Japan
2Director of Medical Education, Shionan Kamakura General Hospital, Kamakura, Japan
3Department of Rheumatology, Chubu-Rosai Hospital, Nagoya, Japan

Abstract

Addison’s disease refers to a chronic endocrine disorder characterized by primary adrenal insufficiency. The disease can occur due to various causes including autoimmune disease, infection, tumor and vascular disease. In the past, Mycobacterium tuberculosis (TB) infection was a major cause of adrenal failure and was associated primarily with early co-pulmonary infection. In the present era however, Addison’s disease secondary to primary adrenal TB infection is somewhat rare. We describe a patient who was admitted to our hospital and was diagnosed with Addison’s disease secondary to TB proven only following laparoscopic adrenalectomy.

Case Report

A 61-year-old woman was admitted our hospital complaining of weight loss and general fatigue. She had lost approximately 20 kg during the preceding six months and had undergone diagnostic esophagogastroduodenoscopy, which had revealed no abnormalities. She had also noticed an increasing degree of skin pigmentation over her entire body over the previous several months. There was no significant previous medical history, including no history of TB infection and no history of exposure to other individuals with this infection. On the admission day, the patient was confused, with a blood pressure of 83/56 mmHg, heart rate of 65 beats per minute and regular, temperature of 36.6°C and respiratory rate of 30 per minute respectively. The physical findings included a body mass index (BMI) of 16.6. Her skin, in addition to the oral and lip mucous membranes, were darkly pigmented. The cardiac, respiratory, abdomen and neurological examinations revealed no abnormalities.

Blood results revealed the following: red blood cell count 419 × 10^4/μL (normal range 400 - 450×10^4/μL), hemoglobin 11.6 g/dL (normal range 12.0 - 16.0 g/dL), hematocrit 34.7% (normal range 37.0 - 42.0%), white blood cell count 7,200/μL (normal range 4,000 - 9,000/μL), platelet count 31.2 × 10^4/μL (normal range 12.0 - 30.0 ×10^4/μL), serum sodium 126 mEq/L (normal range 138 - 146 mEq/L), serum potassium 4.4 mEq/L (normal range 3.6 - 4.9 mEq/L), serum chloride 93 mEq/L (normal range 99 - 109 mEq/L), serum aspartate aminotransferase 41 IU/L (normal range 13 - 33 mEq/L), serum alanine aminotransferase 19 IU/L (normal range 6 - 27 mEq/L), serum lactate dehydrogenase 148 IU/L (normal range 119 - 229 IU/L) and plasma glucose 70 mg/dL (normal range 80 - 112 mg/dL), blood urea nitrogen 20.0 mg/dL (normal range 8 - 22.0 mg/dL), serum creatinine 0.53 mg/L (normal range 0.4 - 0.7 mg/dL), serum C-reactive protein 2.96 mg/dL (normal range <0.3 mg/dL) and serum osmolality 260 mOsm/kg (normal range 270 - 288 mOsm/kg). Serum adrenal cortex (AC) and 21-hydroxylase (21 OH) autoantibodies were both negative respectively. The results of serological tests for other autoimmune diseases were all negative and the antibody tests for human immunodeficiency virus (HIV) and cytomegalovirus (CMV) were also negative, respectively. The plasma ACTH was 568.5 pg/ml (normal range 7.2 - 66.3 pg/ml), the plasma cortisol 1.8 μg/dL (normal range 4.0 - 22.3 μg/dL) and the serum aldosterone was 60.9 pg/ml (normal range 30 - 159 pg/ml). A rapid ACTH challenge test showed the following serum cortisol profile: Pre-challenge was 2.2 μg/dL and 30 minutes post-challenge was 2.0 μg/dL and the extended 60 minute challenge value was 2.3 μg/dL respectively. Normal response shows an increase of more than 7 μg/dL and a maximal level >20 μg/dL at 30 minutes. The above results were diagnostic of primary adrenal insufficiency. A chest radiograph and chest computed tomographic (CT) images obtained at admission revealed no abnormalities (Figure 1A & 1B). However, abdominal CT and magnetic resonance imaging (MRI) revealed bilateral enlargement of the adrenal glands without calcification (Figure 2A & 2B). Sputum polymerase chain reaction (PCR) test was negative for M. tuberculosis, but the initial and repeated Quanti FERON-TB Gold tests were both positive, leading to a suspected diagnosis of primary adrenal TB.

Clinical course of the patient

Intravenous hydrocortisone was administered at 300 mg/day for acute hypoadrenalism, along with 0.9% saline infusion for slow correction of the sodium levels. With this therapy alone, the patient’s general symptoms greatly improved. Subsequently, antituberculous therapy was also commenced as follows: rifampicin 450 mg/day, isoniazid 300 mg/day, pyrazinamide 1500 mg/day, pyridoxal 30 mg/day and ethambutol 750 mg/day, respectively. With further clinical improvement, the hydrocortisone dose was reduced to 40 mg/day. However, since adrenal malignancy could not be excluded as the cause of the bilateral adrenal enlargement, laparoscopic adrenalectomy was performed for definitive diagnosis. Postoperative pathological
examination of the adrenal gland (Figure 3A & 3B) showed abnormal adrenal structure. Histologically, caseating necrosis and Langhans-type giant cells were identified (Figure 3C & 3D). The tissue polymerase chain reaction test was positive for M. tuberculosis, confirming primary adrenal TB.

Discussion

Adrenal insufficiency was first described by Thomas Addison in 1855. At that time, the major cause of adrenal insufficiency was Mycobacterium tuberculosis infection. Today, in developed countries, primary adrenal insufficiency is a relatively rare disease. For example, the prevalence of this disease per 100,000 populations is 0.45 in New Zealand, 11.7 in Italy, between 4-11 for Northern European countries and in the United States [1]. In Japan, The Ministry of Health, Labour and Welfare estimated that 660 cases of primary Addison’s disease are diagnosed per year. In Japan, the TB incidence has decreased dramatically as exemplified in the 2010 annual report of the tuberculosis survey of registrant information, which estimated the prevalence as 18.2 per 100,000 (down 0.8 from the previous year). Accordingly, the incidence and major etiology of Addison’s disease has changed over time and is now commonly associated with autoimmunity.

Figure 2: Enhanced CT shows mass-like enlargement of both adrenal glands, and peripheral rim enhancement in the left adrenal gland (A). MRI (T2 weighted image) also shows enlargement of both adrenal glands with a low intensity of the central part of the gland (B).

Figure 3: The surface of left adrenal gland is smooth, the gland measuring 5.2 cm × 4.0 cm in size (A). Cut sections showing whitish and yellow masses (B). Histopathology of hematoxylin & eosin-stained sections of the adrenal glands revealing caseating necrosis and a Langhans-type giant cell (arrow) (C). There was almost complete loss of normal adrenal architecture (D).
have a better sensitivity and with fewer adverse events compared to the percutaneous route [9]. Hence, in this case, bilateral adrenalectomy was the most appropriate intervention to establish a definitive diagnosis. AC and 21-OH autoantibodies were both negative in this case but this cannot exclude the diagnosis of autoimmune Addison’s disease entirely. Conversely, the presence of such autoantibodies does not necessarily diagnose autoimmune Addison’s disease either, as such autoantibodies, when found in isolation rather than together, can be positive in tuberculosis. This was exemplified by Nigam et al. [11] who revealed 18 tuberculosis and 1 fungal infection of 38 patients with granulomatous adrenal glands but who also had positive adrenal autoantibodies. Falorni et al. [3] noted that the detection of AC or 21-OH autoantibodies in patients’ with adrenal insufficiency did not lead to a definitive diagnosis of autoimmune Addison’s disease, in view that adrenal autoantibodies are found sporadically in patients with post-tuberculosis adrenalitis. Indeed, the study showed 3 of 18 autoimmune Addison’s disease patients’ who had isolated 21-OH autoantibody also had an episode of tuberculosis and the same for 8 of 27 autoimmune Addison’s disease patients’ who had isolated AC autoantibody [3]. Nomura also found 7-13% of tuberculous Addison’s disease patients’ who had an episode of tuberculosis and the same for 8 of 27 autoimmune Addison’s disease patients’ who had isolated 21-OH autoantibody also had positive adrenal antibodies in Addison’s disease among north Indian Caucasians. Clin Endocrinol 59: 593-598.

Conclusion

Adrenal TB is a rare but important disease entity that must be identified early and treated promptly and aggressively. Despite indirect evidence suggesting TB as the cause of the adrenal gland abnormalities in our patient, malignancy could not be excluded without first obtaining tissue for pathological examination. In the authors’ opinion, it is considered that TB is often under-diagnosed in Japan as there is a misguided belief that TB drugs are completely effective and that it is a disease of the past rather than the present. However, in Japan, there is a frequent overuse of fluoroquinolone antibiotics by physicians [12], which can partially treat TB and therefore delay the diagnosis of the disease [13] with the potential to induce drug resistance to this second-line drug and particularly after multiple doses [14]. Therefore, if the diagnosis of Addison’s disease is uncertain and malignancy is suspected, prior to invasive investigations, TB testing should be strongly considered in areas with a high rate of disease. Lastly, despite fine needle biopsy being of low risk to the patient, it can nevertheless miss the diagnosis in a substantial number of patients, which may therefore still require that adrenalectomy be performed.

This case prompts us to revisit the past and consider TB as an uncommon, albeit potentially devastating cause of adrenal failure in modern society.

References