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Abstract

Nanotechnology has opened up new vistas for applications in almost all the disciplines of veterinary and animal
sciences. Zinc oxide (ZnO) has been used as an alternative to antibiotics in animal feed. It has also been widely
used for wound healing and various skin disorders. Recently ZnO nanoparticles (NPs) have attracted attention
owing to their unique features. There can be numerous applications of ZnO NPs due to their antibacterial,
antineoplastic, wound healing, ultraviolet scattering and angiogenic properties. These have also been used to
promote tissue repair, as a food preservative and as feed additive. This paper reviews the recent developments in
ZnO NPs research and its potential for application in animal health and production.
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Introduction
Nanotechnology has become the forefront of research and has the

tremendous potential to revolutionize the livestock sector. With the
advent of this emerging field, wide varieties of nanoparticles with
exciting characteristics are being manufactured and used for a broad
range of applications [1]. The amount of manufactured nanoparticles
will rise sharply to 58,000 tons by 2020 [2]. The metal oxide
nanoparticles are most commonly used in catalysis, sensors,
environmental remediation and personal care products [3,4]. Zinc
oxide (ZnO) among nanosized metal oxides has been extensively used
due to its antimicrobial and antitumor activities [5]. ZnO is generally
included in cosmetic lotions as it is known to possess UV absorbing
and blocking properties [6]. ZnO has also been used as an astringent
for eczema, excoriation, wounds and haemorrhoids in human
medicine [7]. Recently ZnO NPs have attracted attention owing to
their unique features. There can be numerous potential applications of
ZnO NPs in veterinary sciences due to their antibacterial,
antineoplastic, wound healing and angiogenic properties. ZnO NPs
have been used in tissue repair, as food preservative and as feed
additive (Figure 1). In animals, the treatment of meningitis, tumors
and diseases caused by intracellular pathogens like viruses, bacteria
(Brucella, Chlamydia, and Rickettsia etc.) and fungi (Histoplasma
capsulatum, Cryptococcus neoformans) is really difficult due to
inaccessibility of the drugs to the target site. To treat these affections
the therapeutic agents have to penetrate inside cells and able to cross
the blood brain barrier. This is not possible with existing macro
molecular therapeutic substances, but the nanoparticles can act against
intracellular pathogens and brain tumors due to their small size [8].
This review deals with the potential applications of ZnO NPs in
veterinary sciences. Numerous conditions in animals where ZnO NPs
may play role and the potential uses of ZnO NPs as food preservative
and feed additive have also been described. Finally, the challenges in
terms of the potential toxic effects of ZnO NPs have also been
discussed.

Figure 1: Schematic presentation of potential applications of Zinc
oxide nanoparticles (ZnO NPs) in veterinary sciences due to their
antibacterial, antineoplastic, wound healing and angiogenic
properties. ZnO NPs have also been used in tissue repair, as food
preservative and feed additive.

Antibacterial Property
Commonly used antibiotics have narrow therapeutic index and

their continuous usage leads to antimicrobial resistance [9]. The novel
substitutes especially inorganic nanoparticles have recently attracted
attention. Metal oxide in the nano-range acquires distinctive
properties that depend on size, chemical composition and surface
chemistry. Among the metal oxide nanoparticles, the ZnO NPs have
been commonly used for their antimicrobial properties. ZnO has been
found to reduce the activity of wide range of bacteria [10,11]. With the
use of NPs the antibacterial property increased significantly [12-14].
The precise mechanism of antibacterial action is not yet understood,
but four mechanisms have been hypothesized as illustrated in Figure 2.
Firstly, affinity between ZnO and bacterial cells [15]; Secondly,
microbial cell injury caused by hydrogen peroxide generated from the
surface of ZnO [12,16,17]. Thirdly, upon penetration into bacteria
ZnO NPs cause bactericidal activity by interacting with phosphorus
and sulphur containing compounds like DNA of bacteria [18-21]. Last
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but not the least, ZnO NPs arrest the cellular metabolism of bacteria
by binding to the protein molecules and ultimately causing death of
the microbes [22].

ZnO NPs have more pronounced antibacterial property due to
small size and high surface-to-volume ratio. The size of the
nanoparticles may have greater impact on their activity due to more
accumulation inside the cell membrane and the cytoplasm [23].
Comparative study on antibacterial effect of both micron and nano
scale particles of ZnO revealed that ZnO NPs have a greater
antibacterial effect [24]. ZnO NPs could be ideal for replacing some of
the existing antibiotics [25-28].

Figure 2: Diagrammatic presentation of possible mechanisms of
antibacterial action of Zinc oxide nanoparticles (ZnO NPs). ZnO
NPs bind to the bacterial cells. The hydrogen peroxide generated
from the surface of ZnO cause microbial cell injury and
nanoparticles penetrate into bacteria. ZnO NPs cause bactericidal
activity by interacting with phosphorus and sulphur containing
compounds like DNA of bacteria. ZnO NPs arrest the cellular
metabolism of bacteria by binding to the protein molecules and
ultimately causing death of the microbes.

ZnO NPs can have application in conditions like mastitis in
animals, where they can reach the target organisms generally
inaccessible to conventional antibiotics. Mastitis is a disease of high
yielding animals commonly caused by Staphylococcus, Streptococcus
and E. coli. Economic consequences of mastitis include reduced milk
yield and increased use of drugs and veterinary services [29,30]. It is
really very difficult to treat mastitis due to antibiotic resistance.
Presence of biofilm inside the udder tissue makes the bacteria
impervious to physical, chemical and even innate immune mechanism
[31]. ZnO NPs have been found to be effective against S. aureus and E.
coli [32-34]. The treatment of staphylococcal mastitis in animals is
really challenging due to intra cellular tendency of the organism. As
the nanoformulations are able to penetrate the cell, ZnO NPs can be
employed for staphylococcal mastitis. Most of the times, the pH of
mastitis milk is alkaline in nature. The antibacterial with higher
concentration in alkaline medium will be right choice to tackle this
situation. Antibacterial activity of ZnO NPs against S. aureus was
found to be greater at basic pH [32].

E. coli is a gram negative bacterium responsible for coliform
mastitis in ruminants, white scours in calves and coli granuloma in
birds. ZnO NPs have strong antibacterial activity against E. coli
[35-37]. Fowl typhoid is a vertically transmitted disease caused by

Salmonella gallinarum in chicken all over the world [38]. ZnO NPs
were found to be effective against Salmonella
typhimurium and Staphylococcus aureus [34,39]. Listeriosis, also
known as circling disease is caused by Listeria monocytogenes
characterised by encephalitis, septicaemia and abortion in ruminants.
ZnO NPs were effective against L. monocytogenes at various
concentrations [40].

Pseudomonas aeruginosa is a gram negative, rod shaped organism
and prefers to reside in moist anatomic sites such as respiratory and
gastrointestinal tracts in animals and human being [41,42]. It is
intrinsically resistant to wide range of antimicrobials like β-lactam,
tetracycline and chloramphenicol due to drug efflux mechanism and
presence of porin [43,44]. Biofilm formed by this organism makes
another obstacle to antimicrobials [45]. ZnO NPs were found to be
effective against Pseudomonas [32].

Bacillus anthracis, a spore forming bacteria, causes anthrax in
warm-blooded animals. On the other hand, Clostridium an anaerobic
spore forming microbe is responsible for various diseases like tetanus,
botulism, enterotoxaemia, black quarter and braxy in animals. The
spores produced by these organisms remain viable in the environment
for prolonged period and mature to vegetative bacilli under favourable
condition. These spores are highly resistant to extreme temperature
and pressure. ZnO NPs have been found to be effective against the
bacterial spores [46].

ZnO NPs synthesized from plant source revealed enhanced
antimicrobial activity against various pathogens as compared to
chemical ZnO NPs. The activity increased with increased dose and
treatment time [47].

Antineoplastic Property
Amongst the existing treatment strategies for cancer, the

chemotherapeutic agents are the most commonly used in clinical
patients. Currently existing antineoplastics are not highly effective in
curing the patients due to lack of selective toxicity. Indiscriminate use
of antineoplastics may leads to devastating adverse effects like bone
marrow suppression, neurotoxicity and cardiomyopathy [48,49].

So, there is great emphasis to develop novel anti-cancer agents that
can selectively target cancer cells while sparing normal cells.
Nanotechnology has opened new vistas for the treatment and
diagnosis of cancer [50-52]. Nanoparticles can be employed as vehicles
for targeted delivery to tumour sites [53]. The prime benefit is that
they can be taken up by specific cells and internalized to the nucleus
according to their surface chemistry.

At appropriate concentration ZnO NPs induced the production of
variety of proinflammatory cytokines like TNF-α, IFN-γ and IL-12 in
in vitro and in vivo (rat) pulmonary inhalation studies [54-57].
Cytokines induced by nanoparticles could also facilitate effective anti-
cancer actions by eliciting a cytokine profile appropriate for directing
the development of Th1-mediated immunity [58].

ZnO NPs have been shown to possess cell selective toxicity having
preferential killing of cancer cells with minimal toxicity to normal
primary immune cells [2,53,59]. ZnO NPs based diagnostic devices are
useful in the detection of low level of biomarkers for cancer diagnosis
[60,61]. These applications of ZnO NPs can easily be extrapolated for
diagnostic and therapeutic purposes in common neoplastic conditions
of animals like lymphoma, cutaneous cancer, transmissible veneral
tumor and equine sarcoids.
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Neoplasm of integumentary system is the most commonly
encountered neoplastic disorder in domestic animals [62,63]. The
harmony between cutaneous cancer and ultraviolet radiation has been
well established in domestic animals [64-66]. In canines, deeply
penetrating ionizing radiations induce blood and lung cancer [67].
Among the haematopoietic tumours, canine lymphoma is the most
common in dogs [68,69] and manifested as generalized
lymphadenopathy [70]. Canine transmissible veneral tumor also called
as sticker tumor is spread through abraded skin or mucosa during
coitus and also by licking [71]. Apart from facial region, it can also
occur in skin and anal mucosa [72-75]. Metastasis is rare with this
tumor but, involvement of regional lymph nodes and vital organs has
been reported [76-82]. Tumour of mammary gland is often noticed in
intact bitch [83]. In equines, equine sarcoid is the most common
fibroblastic skin tumour affecting horses, mules and donkeys [84-86].
The infection is highly correlated with bovine papilloma virus type 1
and 2 [87,88]. The use of ZnO NPs may be explored for diagnostic as
well as therapeutic approaches in these conditions.

Wound Healing
A wound by true definition is a breakdown in the protective

function of the skin; the loss of continuity of epithelium, along with or
without loss of underlying connective tissues including muscle, bone
and nerves [89]. The sequences of wound healing comprise
inflammation, epithelization, granulation and tissue remodelling
irrespective of the etiology [90]. Microbial contamination of wound
leads to delayed healing process [90-93].

Dog bite wounds are very often contaminated by diversity of
microorganisms from different sources [94,95]. In chronic wounds,
bacteria persist in biofilm form and they induce chronic inflammation
which delays healing and make them more resistant to antimicrobial
therapy [96]. In case of burn injury, affected animals are highly prone
to bacterial infection and ultimately lead to severe septicaemia and
death. It is reported that around 75% of mortality following burn
injuries is associated with Pseudomonas aeruginosa or methicillin
resistant Staphylococcus aureus. Interestingly, ZnO NPs were found to
be effective against Pseudomonas and S. aureus and can be used for
injuries infected with these organisms [32].

Topical application of antiseptic preparations is the best for wound
treatment because of their direct action at wound site [97-99]. Topical
application of zinc has been reported to improve re-epithelialization,
reduce inflammation and bacterial growth in case of leg ulcers [100].
ZnO possesses both antibacterial and anti-inflammatory properties
and accelerates the healing of both acute and chronic wounds [36,101].
It has potential application in the treatment of various conditions like
dermatitis, blisters and open skin sores [102-104]. ZnO NPs are
superior to conventional ZnO powder in terms of antimicrobial
activities especially against Gram-positive organisms [34].

Nervous Tissue Repair
Nerve guidance channel (NGC) is a type of implant placed around

the damaged nervous tissue to promote the healing. It is a hollow tube
into which two severed ends of nerve fibre bundles are inserted and
sutured into place. NGC provides congenial milieu that promotes or
accelerates tissue healing. Conductive and piezoelectric materials such
as polyvinylidene fluoride have been used to enhance the neurite
outgrowth and regeneration of axon without any external electrical
stimulation [105-107]. Incorporation of nanoscale [108] and

piezoelectric elements [105] into the NGC independently enhance the
neural regeneration.

Regeneration of CNS after injury is inhibited mainly due to
astrocytic glial scar formation. Implant placed outside of the CNS such
as an orthopedic implant may attract fibroblast cells and compromise
the osseointegration. Astrocyte activity was minimized by composites
made of ZnO nanoparticles and polyurethane [109]. These properties
of ZnO NPs can be exploited for diseases of CNS in animals.

Food Preservation
Microorganisms such as E. coli O157:H7, Listeria monocytogenes

and Salmonella sp are the most common food borne pathogens and
continue to draw public attention. Each year around 22.8 million cases
of salmonellosis and 37,600 mortalities have been estimated in South
East Asia [39]. In the present scenario, the ready to eat food products
are getting popular because of convenience. They are highly prone to
moisture loss, browning and biofilm action by microbes [110].
Contamination with microbes like E. coli, Salmonella and
Staphylococcus aureus has been reported regularly in food products
[39,111]. To mitigate the growth potential of foodborne pathogens,
implementation of food safety management system is essential [112].
As the incidence of food borne infections is increasing all over the
world, the safety of livestock products is important. Preservatives play
an important role in storage and transport of perishable livestock
products. Antimicrobial compounds in food packaging system
recently attracted attention due to consumer safety and prolonged
shelf life of the product [111]. Currently the food industries are
utilizing organic and inorganic substances for food preservation. The
inorganic antibacterial agents can withstand high temperature and
pressure better than organic substances [17]. High stability and safety
makes ZnO a candidate for use in food preservation [15,25].

Apart from silver nanoparticles zinc, copper and titanium are also
used in packaging industry. ZnO NPs have been used as an
antimicrobial agent in food packaging [33]. Antibacterial activity of
ZnO NPs coated polyvinyl chloride has been observed against E. coli
and S. aureus [113].

Feed Additive
Feed additive can be defined as a substance not having a direct

utilisation as a nutrient, but included at an optimum concentration in
diet or in the drinking water to exert positive action on the animal
health or on the dietary nutrient utilisation. As an alternative to
existing feed additives antibiotics are used due to their low cost and
uniform response. Use of antibiotics in diet of pigs increased the
weight gain and reduced feed conversion ratio by 0.16 and 0.07
respectively [114]. But continuous use of antibiotics provokes
retention in animal tissues and subsequent consumption of such
animal product will certainly increase risk of antibiotic resistance in
humans.

Post-weaning diarrhoea (PWD) caused by enterotoxigenic E. coli
(ETEC) is a major health concern in weaner piglets. It is associated
with an increase in morbidity and mortality and decrease in growth
rate during the weaning period [115]. The addition of zinc (zinc oxide)
at the concentration of 2500 to 3500 ppm in feed modulated the
microbial status of the digestive tract and reduced the incidence of
post-weaning diarrhoea in piglets [116,117] and increased productive
performances [118,119].
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ZnO has been found to be effective against PWD at a concentration
of 3 kg/ton of feed, but the major limitation was high concentrations
of zinc in faeces [119,120]. Supplementation of 100 ppm
microencapsulated ZnO was highly effective when compared to
supplementation of 3,000 ppm ZnO for suppression of PWD in the
first 2 weeks after weaning and also reduced plasma zinc concentration
and faecal zinc excretion levels [121]. It is obvious that the same effect
may be achieved with lesser quantities of ZnO nanoformulation in the
feed.

Ultraviolet Scattering
Ultra violet rays UVA-1 (340-400 nm) and UVA-2 (320-340 nm)

upon reaching our skin cause several biological and metabolic
reactions [122,123]. The dermal part of the skin plays a vital role in the
photo aging process. Reactive oxygen species (ROS) produced by UV
rays activate different matrix metalloproteinases that subsequently
damage collagen and other dermal matrix proteins [124,125]. Long-
term exposure leads to degenerative skin changes, actinic keratoses
and skin cancer. UV-B causes cancer in animals similar to those
observed in humans. Heavy coats and skin pigmentation of most
animals provide protection from UV-B, but eyes and exposed parts of
the body are considered at risk.

Inorganic materials have proven efficacy against UV induced skin
damage. Benefits offered by sunscreens based on inorganic
compounds include absence of skin irritation and sensitization,
limited skin penetration and a broad spectrum protection. Sun screen
lotion containing nanoparticles of Titanium dioxide (TiO2) and ZnO
are transparent and this property provides the cosmetic acceptability
not achievable with opaque formulations [126].

Angiogenesis
Ischaemia is defined as local deficiency of arterial blood supply to

an organ. It is caused by several factors like alteration in the wall,
external pressure from abscess, cyst, and haematoma and blockage of
lumen. It is also noticed in valvular thrombi of heart in pigs caused by
Erysipelothrix rhusiopathiae, mural thrombi of heart in cattle caused
by Clostridium chauvoei, verminous aneurysm of anterior mesenteric
artery in horse caused by Strongylus vulgaris, Spirocerca lupi infection
of aorta in dog, Onchocerca armillata affection in the aorta of cattle
and finally in the ergot poisoning. Persistent ischaemia leads to
necrosis or atrophy of affected organ. So, it is important to restore the
perfusion of affected organ.

Angiogenesis is the process of formation of new capillaries from
pre-existing blood vessels, involving both pro- and anti-angiogenic
factors. It plays an important role in embryonic development, wound
repair, post-ischemic vascularisation of the myocardium, tumor
growth and metastasis [127-129]. Vascular endothelial growth factor A
(VEGF-A) and basic fibrobroblast growth factor (bFGF) are the pro
angiogenic factors used for the treatment of cardiovascular disease,
ischemia and wound healing [127,130-133]. But their limitation with
usage is associated with pathological angiogenesis, thrombosis, fibrosis
and/or the tumor cells proliferation [134]. So, there is a great emphasis
to develop novel pro-angiogenic factors which will specifically
promote angiogenesis in required area without affecting normal tissue.
ZnO nanoflowers have exhibited significant angiogenic property both
in vitro and in vivo in chick embryo [135].

Safety Concerns with ZnO NPs
The properties that offer promise for the development of new

technologies also pose an unknown risk to animals and environmental
health. FDA considered ZnO as a generally recognized as safe
substance (GRAS). The GRAS designation mostly encompasses
materials ranging from micron to larger size. So, conversion of these
macro substances to nanoscale will attain distinctive properties
including toxicity. ZnO NPs tend to dissociate and release ions when
exposed to a biological environment resulting in reactive oxygen
species (ROS) production and cellular oxidative stress [136,137]. Zinc
is an essential component of enzymes (e.g. carbonic anhydrase, alcohol
dehydrogenase, matrix metalloproteinase) and transcription factor like
zinc finger protein transcription factors. Alteration in cellular Zn
homeostasis in in vitro systems leads to loss of viability, oxidative
stress and mitochondrial dysfunction [138]. ZnO NPs rapidly dissolve
in acidic milieu and produce a high local concentration of Zn2+ ions.

Zn2+ is an essential element in cell homeostasis and remains in the
bound form inside cells because free Zn2+ is very reactive and
cytotoxic [139]. The sudden elevation of free Zn2+ levels may damage
lysosomes allowing the contents to release into the cytoplasm and
ultimately causing cell death [140,141]. ZnO NPs exhibit protein
adsorption property which might be responsible for their cytotoxicity
[142]. The pH-triggered (acidic) intracellular release of Zn2+ is mainly
responsible for the toxicity of ZnO nanowires [143].

The pathological changes induced by ZnO NPs mainly depend on
size and dose [144]. ZnO NPs were found to be toxic to all human or
rodent cells when the concentration was above 15 ppm [145]. ZnO
NPs have been studied extensively and they affect different cell types
and animal systems [146-151]. They are toxic to animals after intra
tracheal instillation [152] inhalation [153] and after oral
administration [154,150]. Comparative study on kinetic properties of
ZnO NPs with simple ZnO powder revealed that single intraperitoneal
administration of 100 nm sized ZnO NPs (2.5 g/kg b.wt) accumulated
in liver, spleen, lung, kidney, and heart and the concentration was
higher than the administration of similar amounts of 1 μm sized ZnO
particles [155].

We have demonstrated that interaction of different concentrations
of ZnO NPs with horse erythrocytes revealed the absence of hemolysis
by spectrophotometric method. While, phase contrast microscopic
examination revealed concentration dependent clustering of
erythrocytes [156]. It warrants the detailed investigation of interaction
of erythrocytes with ZnO NPs before their applications in animals.
There are still many challenges to be faced in terms of the potential
toxic effects. Incorporation of metal nanoparticles into polymeric
hydrogel matrices reduce the toxicity and improve the efficacy because
of sustained and controlled release. The effective delivery of ZnO NPs
can be achieved by entrapping, attaching or encapsulating into the
nanoparticle matrix to prevent undesirable effects. We have observed
that nanoformulation of ZnO NPs using biocompatible polymers
enhances the efficacy at lower doses with sustained release [157]. The
toxicity of ZnO NPs-loaded nanohydrogels was substantially lower
compared to ZnO NPs.

Conclusion
We described various animal diseases, where antibacterial,

antineoplastic, and angiogenic properties of ZnO NPs can be
exploited. These have also been used to promote tissue repair, as a
food preservative and as feed additive. Conversion of these macro
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substances to nanoscale will attain distinctive properties including
toxicity. A discussion regarding the advantages, approaches and
limitations on the use of ZnO NPs for various applications and drug
delivery has been presented. The understanding of challenges in terms
of the potential toxic effects of ZnO NPs, the possible mechanisms and
cellular consequences as a result of ZnO NPs interactions with host
cells is necessary to provide better delivery options for ZnO NPs. The
approaches discussed to improve their safety will further make them
attractive for various applications in veterinary species.
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