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A photocatalyst is generally defined as a material that has the 
capability to induce chemical reactions of substances of interest 
adsorbed on the surface by light-generated active radicals [1]. The 
efficiency of the photocatalyst is a function of the balance between 
charge separation, ease of interfacial electron transfer and energy-
wasting charge recombination [2]. With the inspiration of improving 
photocatalysis efficiency and selectivity, people are trying hard to 
develop new photocatalysts. 

Zeolites are crystalline nanoporous inorganic materials with 
well-defined interconnected channels or cavities in the nanometre or 
subnanometer length scale, termed as micropores (0.5-2 nm) [3,4]. 
With the uniform pore size, polar environment, high surface area, the 
internal active sites and excellent adsorption capability [5], zeolites 
could enhance the efficiency and selectivity of photocatalysts either 
by photoactiving the zeolite framework or by encapsulating with 
semiconductor oxides.

Photoactiving the zeolite framework through the incorporation of 
heteroatoms (Ti and other transition metals) can make the structure 
a photocatalyst [6-9]. The most representative example of titanium 
containing zeolite is titanosilicalite TS-1, which has the MFI structure 
[10]. There is a characteristic absorption band at 225 nm, which 
originates from the incorporation of the tetrahedral Ti atoms and 
the electron transfer in ligand-to-metal (–O–Ti). The photocatalytic 
properties of TS-1 was further proved by the decomposition of 
4-nitrophenol in aqueous solution when illuminated with a 500 W high 
pressure Hg lamp [11]. The tetrahedral Ti atoms tripodally connected
to the TS-1 framework are able to form the titanohydroperoxy species
when interacting with H2O2, photochemically generating the •OH
radicals. It was found that Si/Ti ratios (from 3.3 to 26.3) in TS-1 can
greatly affect the photocatalytic efficiency. The TS-1 with the highest
Si/Ti ratio exhibited a remarkable enhancement of the photocatalytic
activity in the presence of H2O2 [11]. TS-1 has also been used to degrade 
monoethanolamine in aqueous solution by forming ethanolamine-Ti
complex [12]. It was found that the photocatalytic activity of TS-1 is
comparable with TiO2 per weight of photocatalyst and the intrinsic
activity per Ti atom in TS-1 is higher than that in TiO2.

Besides TS-1, Ti-Beta zeolite could be used for the selective 
oxidation of alkenes in the presence of organic hydroperoxides [13]. It 
was found that the hydrophilic or hydrophobic properties of the zeolite 
cavities could control the reactivity and selectivity in the photocatalytic 
reduction of CO2 with H2O to produce CH4 and CH3OH on these Ti-
Beta zeolite catalysts [14]. This result opened a new way to improve the 
photocatalytic activity by modifying the surface properties of zeolite. 
Furthermore, a novel titanosilicate ETS-10 contains photoexcitable 
Ti–O–Ti 1-dimensional quantum wires and 3-dimensional 12-ring 
channel was reported recently [15]. It was found that this ETS-10 could 
act as a shape-selective photocatalyst for the degradation of a mixture 
of phenols of different sizes [16]. The compounds which are small 
enough to access the interior of the micropores become protected and 
are degraded more slowly, while the others that are too large to enter 
the pores are degraded preferentially. 

It is relatively difficult to obtain zeolites with photocatalytically 
active framework, and the amount of these zeolites is pretty few. 
Another class of zeolite-based photocatalysts, which incorporates 
semiconductor oxides into the cavities either by ion exchange or by 
hydrothermal method, has been widely studied [17-20]. In this type of 
semiconductor @ zeolite photocatalysts, the unique characteristics of 
zeolite could be fully utilized, such as, the crystal structure determines 
the size of the encapsulated particles and the optical absorption 
bandgap, [21] the polar environment favors the photoinduced electron 
transfer and minimizes the electron-hole recombination [22]. The 
most representative semiconductor @ zeolitephotocatalyst is TiO2 @ 
Zeolite, which has been widely studied recently. It was found that TiO2 
@ Zeolite is efficient for the decomposition of NO, [23] for the efficient 
removal of NH3 and H2S from air [24] and for the reduction of CO2 
[25]. TiO2 @ Zeolite is also efficient for selectivity photocatalyze CH3OH 
with minor product concentration of CO and O2 [26]. Furthermore, it 
was suggested that different semiconductor oxides located in different 
cages of zeolite may further synergistically enhance the photocatalytic 
performance of semiconductor @ zeolitephotocatalyst [19]. For 
example, a maximum water splitting efficiency of (ZnS-CdS) @Y 
photocatalyst was achieved at a Cd/Zn ratio of 0.25 and when CdS and 
ZnS clusters were located in α-cages and β-cages, respectively [27,28].

The photocatalytic efficiency of zeolites could be further enhanced 
by incorporating the photoactive zeolite framework and semiconductor 
photocatalysts together. For example, microporous titanosilicates 
(ETS-4, ETS-10) have been utilized to incorporate CdS, in which the 
Ti-O-Ti backbone acts as a nanowire capable of accepting electrons 
from the photoexcited CdS [29,30]. The encapsulation of CdS in ETS 
zeolite is effective for improving the activity as well as the stability of CdS.

In conclusion, by photoactiving the zeolite framework and by 
encapsulating with semiconductor oxides, the efficiency and selectivity 
of zeolite-based photocatalysts could be enhanced effectively. However, 
little is known about the photocatalysis mechanism on a molecular 
level, to which people should pay special attention in the future.
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