
Volume 4 • Issue 1 • 1000e123J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Mancas, J Inform Tech Softw Eng 2014, 4:1 
DOI: 10.4172/2165-7866.1000e123

Editorial Open Access

Will Software Development Projects Always Risk Delays?
Christian Mancas*
Department of Computer Science, Bucharest Polytechnic University, Romania

*Corresponding author: Christian Mancas, Department of Computer Science,
Bucharest Polytechnic University, Romania, Tel: 40722357078; E-mail:
christian.mancas@gmail.com

Received February 19, 2014; Accepted May 01, 2014; Published June 09, 2014

Citation: Mancas C, (2014) Will Software Development Projects Always Risk 
Delays?. J Inform Tech Softw Eng 4: e123. doi:10.4172/2165-7866.1000e123

Copyright: © 2014 Mancas C. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

State of the Art
It is true that, generally, mankind is still not mastering estimation, 

although lot of effort has been done in this field too. However, accurate 
estimations are currently rather the norm than the exception in most 
domains, from missiles manufacturing to cooking. How comes then 
that so many software development projects are still behind their 
schedules, despite the fact that many of the involved people have solid 
computer science background [1-3].

Generally, depending on available data, they say that between 50% 
to 66% of the software development projects fail to meet their deadlines. 
For example, [4] found that more than half of 2011 SE projects failed 
or were considered at risk for a bunch of reasons, including resource 
conflicts, insufficient data, and timelines that are too tight. Even worse, 
delayed projects have sometimes to be abandoned [5]. As another, more 
recent example, [6] reported that only 39% of the worldwide software 
projects in 2012 were considered a success by standards of budget, 
cost, and expected functionality, a whopping 43% were deemed as 
challenged (late, over budget, and/or with less than the required features 
and functions), and 18% as failures (cancelled prior to completion or 
delivered and never used). Put another way, about two of every three 
software projects are simply not ready when they are released to the 
customer or an unsuspecting public.

Fortunately, the trend is towards improvement: for example, three 
years before, a similar report showed that some 66% of the software 
projects failed to meet their deadlines, as compared to this 61%.

Reasons of Delays in Software Engineering Projects
Main product development delay causes (which also apply to 

software products) were and are constantly scrutinized by researchers 
all over the world. Thomke [7] identifies six involved fallacies (and 
suggests corresponding countermeasures):

(i) High utilization of resources will improve performance.

(ii) Processing the work in large batches improves the economics 
of the process.

(iii) Our plan is great; we just need to stick to it.

(iv) The sooner the project is started, the sooner it will be finished. 

(v) The more features we put into a product, the more customers 
will like it.

(vi) We will be more successful if we get it right the first time.

Lot of other books and papers [8-11] were devoted to this topic.
In my opinion, after nearly 40 years of experience in this field, the 
following 16 causes of delays in software development projects, in 
increasing order of their relevance, are the top ones:

• Force majeure

• Gold plating

• Customers not trusting developers

• Working on too many projects at the same time

• Securing project approval

• Choosing an improper platform

• Absence of analysis and design principles

• Cuts in quality control

• Customer delays

• Poor architecture and/or design

• Underqualified personnel

• Overly optimistic schedules

• Functionality expansion

• Poor business analysis

• Too much research involved

• Project complexity

Possible and almost Impossible Solutions
Here are, in my opinion, some possible solutions to part of the 

above issues:

• Trivially, project managers should allow for gold plating if and
only if the customer asks and pays for it or if no other task is assignable 
to the corresponding developers.

• More than in everyday life, tensions between customers and
developers should be always avoided; whenever they appear, however, 
they should be dismounted immediately.

• Obviously, organizations should always consider whether they
have enough resources to complete all projects successfully. They need 
to consider whether they need to work with an outsourced service 
provider, especially when they are short on specific skills and expertise. 

• To secure faster project approval, we should build a sense of
urgency by helping management understand the risks of a lengthy 
approval timeline. While some things may be out of our control, we can 
help educate and communicate with stakeholders to get projects started 
more quickly, thus increasing the chances of on-time completion.

• Whenever choice of platform is possible, we should spend enough
time in order to choose the best one. Moreover, we should always 
encourage and assist customers to upgrade to their best new versions.

• It is obviously necessary that both analysts and designers have up-
to-date knowledge of emerging business analysis and software design 
principles.

• Cuts in quality control should never be allowed!

• Customers should always be explained that it is in their best
interest to timely cooperate such that they do not cause delays.

Jo
ur

na
l o

f I
nf

or
m

at
ion Technology & Software Engineering

ISSN: 2165-7866

Journal of
Information Technology & Software Engineering



Volume 4 • Issue 1 • 1000128J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Mancas C, (2014) Will Software Development Projects Always Risk Delays?. J Inform Tech Softw Eng 4: e123. doi:10.4172/2165-
7866.1000e123

Page 2 of 3

• Enough time should always be spent for the architecture and 
design phases.

• Developers should be very carefully selected, on qualitative not 
quantitative (e.g. x years of Java and y years of PL/SQL experience) 
grounds, motivated, and continuously trained for the latest 
methodologies and technologies.

• Developers should always be encouraged to ask others for 
opinions about their issues whenever they don’t manage to solve by 
themselves within reasonable time (some half an hour, for example). 
While explaining your issue to a colleague, most often you will find the 
solution yourself. We should not waste too much time: together, as a 
team, we just know more. Be proud you dared to ask for help!

• Even the rough estimations should be done based on enough data, 
only by qualified and experienced personnel, and optimism should be 
tempered by sharp realism!

• Especially for immature customers (but not only) projects 
requirements should be taken in writing and some legal bond be 
filled for requirement specifications. It is necessary that all hidden 
and explicit requirements are mentioned in detail and contracts be 
modified accordingly for any functionality expansion (for all related 
legal provisions, see [12], for example).

• Research should be carried by the best qualified personnel, who 
should also possess best possible didactic skills for explaining their 
findings to all involved colleagues in the minimum possible time and 
with maximum efficiency.

• Complexity should never be underestimated and always tackled 
with the most advanced methodologies and technologies available.

An example of such a methodology is the Lean Software 
Development (LSD) one [13,14]. Adapted from the Toyota Production 
System in 2003, LSD is a translation of lean manufacturing and 
IT principles and practices to the software development domain. 
Consequently, a pro-lean subculture emerged from within the Agile 
community [15,16]. Iterative software development methods (e.g. 
Agile) do not develop complete software in whole cycles, but develop 
prototypes and iteratively improve upon them. They suppose shorter 
software development cycles; hence, software is quickly delivered and 
then improved immediately. They allow customers to make better 
decisions after having better understood their requirements. They 
encourage reducing the number of errors, finding and fixing them as 
early as possible: otherwise, software defects accumulate and multiply 
manifold times.

SE teams should be empowered: managers must listen to developers, 
so that they can explain what actions might be taken, as well as to 
provide suggestions for improvement. Developers (generally, people) 
should never be considered as tools: they need to be motivated and be 
inspired to a higher purpose.

Companies that have employed Service Virtualization (SV) 
consider that it helps improve the quality of their products, lowers 
costs, and helps getting to market faster. SV is using in-house software 
processes to simulate real-world situations that can also be used during 
development as a reliable stand-in for critical components, such as 
mainframes and third-party systems. SV provides the ability to simulate 
how software products will perform in the wild, which allows making 
improvements on the fly in a secure environment; as it’s less expensive 
to simulate processes, SV impact can be dramatic: it allows for quick, 
inexpensive test cycles to ensure that projects are ready for production.

• Unfortunately, not only major force is sometimes impossible 

to cope with; there will always remain other issues with no possible 
solution:

• Generally, once lack of customer trust occurred, it is very rare that 
trust is regained, even after tensions disappeared. As they say, building 
trust is a long and painful process, while for losing it one mistake or 
even misunderstanding may be enough.

• Almost regardless of its size, no company may generally afford 
to ignore a new project possibility, even when its workforce is fully 
occupied: managers will always tend to hire more personnel, even if in 
hurry, rather than losing a contract to competition.

• Market pressure from ever increasing competition will continue 
in the foreseeable future to determine managers proposing and/
or accepting unrealistic deadlines, causing poor business analysis, 
software architecture, and design, hiring underqualified personnel, cuts 
in quality control, and overly optimistic schedules.

• Brooks’ law (“adding manpower to a late software project makes it 
later” [8]) will always remain true (as “Nine women can’t make a baby 
in one month”![8]).

• Even if some customers grow mature in time, there will always 
spring lot of immature ones; moreover, both of them will generally 
always ask for functionality expansions in all project stages, very rarely 
accepting corresponding additional time and fees.

• Nothing can replace research.

• Complexity is inherent to almost any large software development 
project.

Conclusion
Iterative methods of software development (e.g. Agile) that correct 

mistakes in the earliest possible stages do help to avoid or at least 
minimize delays. While Lean springs from manufacturing, the insights 
that are so relevant there are even more critical in SE.

Dually, note that developmental methods (be them waterfall 
lifecycle, agile process, or any other) alone are not guaranteeing by 
themselves either observing deadlines or software quality. Fortunately, 
there are “little” details we should always commit to for saving time and 
heartache down the line:

• Truly understand customers’ needs.

• Get requirements right the first time.

• Implement the correct architecture.

• Employ simulation tools that help working out kinks before 
integration.

• Examine the testing and integration phase for ways of reducing 
cycle time.

Developing high-quality software saves our money in multiple 
ways, as customers ask for quality: anything that falls short can result 
in the need to rework code, fix bugs, and sometimes even revisit 
requirements, architecture, and/or design (by far the most costly of 
them all). These “fixes” inevitably lead to delays that put off deliverables 
(and corresponding payments) and cost extra hours that must be 
invested in repairing the product. The biggest impact of bad software is 
damage to your brand: even only one screw-up gives customers a great 
excuse to choose the competition next time around.

There is certainly great room for improvement, but it is undeniable 
that the SE industry has come a long way in a reasonably short period 



Volume 4 • Issue 1 • 1000128J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Mancas C, (2014) Will Software Development Projects Always Risk Delays?. J Inform Tech Softw Eng 4: e123. doi:10.4172/2165-
7866.1000e123

Page 3 of 3

of time. There is lot of factors that make SE truly unique. As opposed 
to any other industry, SE is truly ubiquitous: it is used in almost every 
aspect of our modern life. It is almost a miracle that SE achieved this 
much progress and is capable of delivering the results it does.

Obviously, changing SE companies from “artisans” to “factories” 
is not possible: factories are executing a (sometimes long time ago) 
established process; their workers execute their process with not 
that much human thought (if any: when none is needed, workers are 
replaced with robots). Software development is not executing, but 
creating processes: SE is much more akin to designing the factory and 
its processes rather than running it. Although software creation benefits 
from standards, it cannot fundamentally become a factory.

The software development delays problem is one of expectation: 
just because methodology and technology are there doesn’t mean 
using them is going to be successful (or wise to use) for a while; if 
other industries behaved like the SE one did, we’d have black hole 
powered cars for sale by the end of this year or some “visionary” would 
have the resources to build a Mars base, also including a McDonald 
fast-food. The problem is not the SE industry, but the expectations 
placed on it. While we should continue striving for excellence, which 
includes avoiding or at least reducing delays, our customers should 
also understand that software development is creation and, as such, 
is perpetually condemned to delays: no composer, for example, may 
be always expected to meet any imposed deadline for writing a new 
symphony; moreover, it is not in the interest of any commissioner to 
cause the death of neither a composer (like most probably was the case 
of Mozart) nor a SE (or any other industry) company.
References

1. U.S. Congress (2013) House Report 113-102 - National Defense Authorization 
Act for Fiscal Year 2014.

2. DOT&E (2014) FY 2013 Annual Report. 

3. U.S. G.A.O. (1992) Software Development Problems Delay the Army’s Fire
Direction Data Manager. 

4. PM Solutions (2011) Strategies for Project Recovery. 

5. Ewusi-Mensah K (2003) Software development failures: anatomy of abandoned 
projects. MIT Press. 

6. The Standish Group (2013) CHAOS Manifesto 2013. Think Big, Act Small.

7. Thomke S, Reinertsen D (2012) Six myths of product development. Harvard
Business Review

8. Brooks F (1995) The Mythical Man-Month: Essays on Software Engineering,
anniversary edition, Addison-Wesley.

9. McDonell S (1996) Rapid Development: Taming Wild Software Schedules.
Microsoft Press. 

10. Knight J, Thomas R, Angus B, Case J (2012) Project Management for Profit: 
A Failsafe Guide to Keeping Projects On Track and On Budget. Harvard
Business Press.

11. Dewar RBK, Schonberg E (2008) Computer Science Education: Where Are
the Software Engineers of Tomorrow? CrossTalk, The Journal of Defense
Software Engineering.

12. Stephen FJD (2007) Legal Guide to Web & Software Development, 5th edition. 
Delta Printing Solutions Inc.

13. Poppendieck M, Poppendieck T (2003) Lean Software Development: An Agile
Toolkit. Addison-Wesley. 

14. Ries E (2011) The Lean Startup: How Today’s Entrepreneurs Use Continuous
Innovation to Create Radically Successful Businesses. Crown Business. 

15. Schwaber K, Sutherland J (2013) The Scrum Guide.

16. Langr J, Ottinger T (2011) Agile in a Flash: Speed-Learning Agile Software
Development (Pragmatic Programmers). Pragmatic Bookshelf.

http://beta.congress.gov/congressional-report/113th-congress/house-report/102/1
http://beta.congress.gov/congressional-report/113th-congress/house-report/102/1
http://www.dote.osd.mil/pub/reports/FY2013/
http://www.gao.gov/products/IMTEC-92-32
http://www.gao.gov/products/IMTEC-92-32
http://www.pmsolutions.com/collateral/research/Strategies%20for%20Project%20Recovery%202011.pdf
http://books.google.co.in/books/about/Software_Development_Failures.html?id=cWde_yxJorEC&redir_esc=y
http://books.google.co.in/books/about/Software_Development_Failures.html?id=cWde_yxJorEC&redir_esc=y
http://www.versionone.com/assets/img/files/ChaosManifesto2013.pdf
http://hbr.org/2012/05/six-myths-of-product-development/ar/1
http://hbr.org/2012/05/six-myths-of-product-development/ar/1
http://books.cat-v.org/computer-science/mythical-man-month/tmmm.pdf
http://books.cat-v.org/computer-science/mythical-man-month/tmmm.pdf
http://books.google.co.in/books/about/Rapid_development.html?id=qM4Yzf8K9hwC
http://books.google.co.in/books/about/Rapid_development.html?id=qM4Yzf8K9hwC
http://hbr.org/product/project-management-for-profit-a-failsafe-guide-to-keeping-projects-on-track-and-on-budget/an/10840-HBK-ENG
http://hbr.org/product/project-management-for-profit-a-failsafe-guide-to-keeping-projects-on-track-and-on-budget/an/10840-HBK-ENG
http://hbr.org/product/project-management-for-profit-a-failsafe-guide-to-keeping-projects-on-track-and-on-budget/an/10840-HBK-ENG
http://www.crosstalkonline.org/storage/issue-archives/2008/200801/200801-Dewar.pdf
http://www.crosstalkonline.org/storage/issue-archives/2008/200801/200801-Dewar.pdf
http://www.crosstalkonline.org/storage/issue-archives/2008/200801/200801-Dewar.pdf
http://dl.acm.org/citation.cfm?id=829556
http://dl.acm.org/citation.cfm?id=829556
http://www.stpia.ir/files/The%20Lean%20Startup%20.pdf
http://www.stpia.ir/files/The%20Lean%20Startup%20.pdf
https://www.scrum.org/scrum-guide?gclid=CNP159S7-7wCFYQfwwodgm4AEg
http://pragprog.com/book/olag/agile-in-a-flash
http://pragprog.com/book/olag/agile-in-a-flash

	Title
	Corresponding author
	State of the Art
	Reasons of Delays in Software Engineering Projects
	Possible and almost Impossible Solutions
	Conclusion
	References

