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The cerium-catalyzed Belousov-Zhabotinsky oscillating reaction 
[1-4] and its variants (Fe [5,6], Ru [7,8], Mn [9-11]) are inherently 
connected to the chemistry of bromine oxoacids HBrOx. The 
growing interest in nonlinear chemical systems [12-14] has provided 
strong incentives to study bromine chemistry, and especially the 
disproportionation of bromous acid has been studied in great detail 
[15-29]. The bromine chemistry of the Belousov-Zhabotinsky reaction 
(BZR) involves hypobromous acid HOBr (1), bromous acid HOBrO 
(2) and bromic acid HBrO3 (3), and the disproportionation reaction of
bromous acid (R4) is a key step.

H+ + Br- + HOBrO ⇄ 2 HOBr   (R2) 

2 H+ + Br- + BrO3
- ⇄ HOBr + HOBrO   (R3) 

2 HOBrO ⇄ HOBr + H+ + BrO3
-   (R4) 

It is generally agreed that hypobromous acid (pKa(HOBr)=8.59 
[30,31]) and bromous acid (pKa (HOBrO)=3.43 [29]) are not dissociated 
at pH values typical for the BZR. In contrast, it has been assumed that 
bromic acid is dissociated under BZR conditions even though the 
acidity of bromic acid has not been well established. Experimental 
pKa(3) values of 1.87 [30], 0.7 [31], and -0.29 [32] were reported and, 
most recently, Cortes and Faria concluded that pKa(3) < -0.5 [33]. We 
wrote recently [34] that it will be important to firmly establish pKa(3) 
because this value decides whether reactions R3 and R4 should be 
replaced by reactions R3’ and R4’, respectively, or whether reactions R3’ 
and R4’ need to be considered in addition to reactions R3 and R4. 

HOBrO2 ⇄ H+ + BrO3
-                (A(3)) 

H+ + Br- + HOBrO2 ⇄ HOBr + HOBrO          (R3’) = (R3) + (A(3)) 

2 HOBrO ⇄ HOBr + HOBrO2 (R4’) = (R4) – (A(3)) 

To explore the consequences of the acidity of bromic acid in 
Belousov-Zhabotinsky reactions, we considered four cases with greatly 
different concentrations and/or ratios of sulfuric acid and bromate. In 
Case 1, molar concentrations of H2SO4 and of KBrO3 were used as a 
simple case of R0 = [H2SO4]0/[BrO3

-]0 = 1. In Case 2, we simulated the 
situation with 0.5 M H2SO4 and 0.1 M KBrO3 (R0=5). This case models 
the concentrations (0.567 M H2SO4, 0.089 M KBrO3) we used in our 
studies of a variant of the ferroin-catalyzed BZR described by Keusch 
[6,38]. In Case 3, we studied the situation with 1.0 M H2SO4 and 0.1 
M KBrO3 (R0 = 10), which closely mimics the Ce-catalyzed BZR [39] 
reported by Shakhashiri (0.9 M H2SO4, 0.075 M KBrO3). Case 4 with 1.5 
M H2SO4 and 0.05 M KBrO3 (R0 = 30) closely mimics the Mn-catalyzed 
BZR [37] reported by Shakhashiri (1.6 M H2SO4, 0.06 M KBrO3). 

H2O ⇄ H+ + OH-, Kw   (1) 

H2A ⇄ H+ + HA-, Ka1,1   (2) 

HA- ⇄ H+ + A2-, Ka1,2   (3)

HB ⇄ H+ + B-, Ka2              (4)

We evaluated the system of differential equations describing the 
equilibria of equations 1-4 with Mathematica [41,42]. Kw denotes the 

ion product of water (Kw=10-14). H2A denotes the diprotic sulfuric acid 
H2SO4 and we employed acidity constants pKa1,1=-3 (a lower bound) 
and pKa1,2=+2 for the first and second dissociations of sulfuric acid 
[43,44]. HB denotes the monoprotic acid HBrO3 and we evaluated the 
four cases for integer values of pKa2 between +3 and -3 to cover the 
entire range of reported experimental pKa2 values (vide supra). The 
most pertinent results of the simulations are summarized in table 1. 
In supporting information we provide more extensive tables (Tables 
S1 – S4) and these also include the results of the simulations without 
consideration of the second dissociation of sulfuric acid. In the present 
context it suffices to state that the protonation state of bromate is 
essentially the same irrespective as to whether the second dissociation 
of sulfuric acid is considered or neglected. 

We begin our analysis of the data in table 1 by examination of the 
ratio RP = [HBrO3]/[BrO3

-]. The measurements of the acidity of bromic 
acid gave values in the range pKa(3)=0.5 ± 1.5, and we find that the RP 
values fall between 1.5 and 0.5 for pka(3)=0 and they fall between 2.9 
and 14.6 for pKa(3)=1. For all cases, neither bromic acid nor bromate is 
the dominant species (95%, RP > 19, RP < 0.05) over a range of at least 
three pKa(3) units. This result leads to the important conclusion that 
reactions R3’ and R4’ must be considered in addition to reactions R3 
and R4 in kinetic models of the BZ reaction with bromate. 

It is qualitatively clear that the equilibrium pH value will be more 
sensitive to the value of pKa(3) the lower one selects the ratio R0 = 
[H2SO4]0/[BrO3

-]0. The quantitative data in table 1 support this notion 
in that the values ∆pH = pH[pKa(3)=+3] – pH[pKa(3)=-3] decrease as 
R0 increases. For Case 1 with R0=1 the ∆pH value is as large as one full 
pH unit. As with Case 1, Case 5 is characterized by R0=1 but in Case 5 
this ratio is realized with much lower (one tenth) initial concentrations 
of sulfuric acid and bromate. Detailed results for Case 5 are listed in 
table S5 and the most pertinent data appear in table 1. While ∆pH ≈ 
0.6 is significantly reduced in Case 5 as compared to Case 1, the ∆pH 
value remains large and of a magnitude that allows for experimental 
approaches to the determination of pKa(3) via pH measurements as a 
function of R0. We explored this notion for pKa(3)=0 and two scenarios: 
In Scenario 1 the initial concentration of sulfuric acid is fixed to 
[H2SO4]0 = 1.0 M while [BrO3

-]0 is allowed to vary between 0.0005 and 4 
M. In Scenario 2 the initial bromate concentration is fixed to [BrO3

-]0 =
0.1 M and [H2SO4]0 varies from 0.1 M to 5 M. The numerical results are
summarized in tables S6 and S7, respectively, and they are illustrated
in figure 1. The figure shows in a compelling fashion that variations
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of R0 in Scenario 1 result in large pH  variations Scenario 1 presents a 
promising approach to measure pKa(3). We hope that this editorial will 
encourage such measurements by suitably equipped research groups, 
and we will be happy to perform the mathematical modeling necessary 
to extract the value of pKa(3) from such experimental data sets. 
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Figure 1:  Simulations of pH as a function of log(R0) for Scenario 1 (1.0 M 
H2SO4, variation of KBrO3) and Scenario 2 (variation of H2SO4, 0.1 M KBrO3) 
for pKa(3) = 0.  
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