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Abstract

Age-related macular degeneration (AMD) is associated with a low level of macular carotenoids in the eye retina.
Only two carotenoids, namely lutein and zeaxanthin are selectively accumulated in the human eye retina from blood
plasma where more than twenty other carotenoids are available. The third carotenoid which is found in the human
retina, meso-zeaxanthin is formed directly in the retina from lutein. All these carotenoids, named also macular
xanthophylls, play key roles in eye health and retinal disease. Macular xanthophylls are thought to combat light-
induced damage mediated by reactive oxygen species by absorbing the most damaging incoming wavelength of
light prior to the formation of reactive oxygen species (a function expected of carotenoids in nerve fibers) and by
chemically and physically quenching reactive oxygen species once they are formed (a function expected of
carotenoids in photoreceptor outer segments). There are two major hypotheses about the precise location of
macular xanthophylls in the nerve fiber layer of photoreceptor axons and in photoreceptor outer segments.
According to the first, macular xanthophylls transversely incorporate in the lipid-bilayer portion of membranes of the
human retina. According to the second, macular xanthophylls are protein-bound by membrane-associated,
xanthophyll-binding proteins. In this review we indicate specific properties of macular xanthophylls that could help
explain their selective accumulation in the primate retina with special attention paid to xanthophyll-membrane
interactions.

Keywords: Macular xanthophylls; Carotenoid; Lutein; Zeaxanthin;
Membrane domain; Lipid bilayer; AMD

Introduction
Carotenoids form a group of more than 750 naturally occurring

organic pigments [1], only 40 of which are present in the typical
human diet [2], and about 20 of them have been detected in human
plasma and tissues [3]. Carotenoids can be divided into two main
classes: carotenes and xanthophylls. Carotenes are non-polar
molecules, which contain only carbon and hydrogen atoms and
xanthophylls are polar carotenoids, which contain at least one oxygen
atom. In addition, xanthophylls can be subdivided into hydroxyl-
carotenoids containing one or two hydroxyl groups and keto-
carotenoids containing ketone groups. Unexpectedly, only two
carotenoids, namely lutein and zeaxanthin (Figure 1), are selectively
accumulated in the membranes of retina from blood plasma, where
more than 20 other carotenoids are available. Another carotenoid,
meso-zeaxathin (which is a stereoisomer of zeaxanthin, (Figure 1)), is
converted from lutein within the retina [4]. The position of the double
bond in one of the rings in lutein and zeaxanthin molecules creates
differences in retinal distribution of these two pigments in the retina.
Zeaxanthin dominates the center region, whereas lutein is dominant in
the peripheral region of the retina [5]. In human retina, the
concentration of carotenoids reaches a level between 0.1 and 1 mM in
the central fovea [6,7], which is about 1000 times higher than in other
tissues. Both xanthophylls are accumulated in the region of
photoreceptor axons [7] and within photoreceptor outer segments
(POSs) [8,9]. Although, macular xanthophylls in POS constitute about
10 to 25% of the amount in the entire retina [8,9], the local

concentration of macular xanthophylls in membranes of the rod outer
segment is ~70% higher than in residual retina membranes [9].
Moreover, Müller cells have also been suggested as a place for
xanthophylls accumulation [10].

The selective uptake of macular xanthophylls into the retina
suggests involvement of xanthophyll-binding proteins. It is not clear
whether macular xanthophylls are transversely incorporated in the
lipid-bilayer portion of retina membranes, or are bound by
membrane-associated xanthophyll-binding proteins. Some of the
xanthophyll-binding proteins have already been identified and
characterized including; GSTP1 (glutathione S-transferases),
zeaxanthin-binding protein [11] and 3 StARD3 (steroidogenic acute
regulatory domain protein3), lutein-binding protein [12]. The
question is whether these proteins are only selective transporters of
macular xanthophylls, or whether they are proteins that can store
xanthophylls. There is also a significant question of whether the
amount of these proteins is sufficient to bind and to store all
xanthophyll molecules, which accumulate in the retina in extremely
high concentrations. Both interactions of lutein and zeaxanthin with
lipid-bilayer membranes and specific proteins are significant.
However, in this review, we will focus on xanthophyll–membrane
interactions.

Age-related macular degeneration (AMD) is multifactorial and a
complex disease. However, ageing and oxidative stress seem to be
major determinants in pathogenesis. Many epidemiological studies
suggest that the higher consumption of lutein and zeaxanthin is
associated with lower risk of AMD [13-15]. Such a protective role is
attributed to an action of these xanthophylls as antioxidants. There is a
huge literature reporting that carotenoids protect phospholipids from
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peroxidation and that they are efficient singlet oxygen quenchers
[16-21]. Why has nature chosen only lutein and zeaxanthin from other
carotenoids to protect retina? Chemically they are very similar. The
ability of these xanthophylls to filter out blue light (all carotenoids
absorb blue/green light) [22] and to quench singlet oxygen (in organic
solution the quenching rate constant depends on the number of
conjugated double bonds) is not better than that of other plasma
carotenoids [21,23]. Therefore, it must be some specific property or
properties of these xanthophylls that could help explain their selective
presence in the retina. One such property is their disposition and
behavior in membranes [24-27]. There are suggestions in the literature
that the segregation of polar and non-polar carotenoids already occurs
on the level of carotenoid transport. Non-polar carotenoids are
transported in human blood plasma primarily in low-density
lipoproteins (LDLs), whereas more polar carotenoids are more evenly
distributed between LDLs and high-density lipoproteins (HDLs)
[28,29]. It is thought that most tissues obtain carotenoids via the LDL
receptor route [29]. However, in the case of lutein and zeaxanthin
transport, we believe that receptors for HDL should be involved
instead. It has been suggested that this role can be played by receptors
that are similar to those found in the central nervous system for HDL
particles containing ApoE [28,30]. In this review we consider other
factors which distinguish lutein and zeaxanthin from other
carotenoids in their protective actions against light stress and
oxidation in lipid membranes of the retina.

Figure 1: Chemical structures of macular xanthophylls: lutein,
zeaxanthin, meso-zeaxanthin and two dietary carotenoids: non-
polar β-carotene and mono-polar β-cryptoxanthin.

Xanthophyll-membrane Interactions
The protective function of macular xanthophylls is highly

correlated to their membrane localization, in particular, with their
membrane solubility, orientation, and distribution between membrane
domains. Below, we will present data which support our hypothesis
that the high solubility, specific orientation within the lipid bilayer,
and the unique lateral distribution between membrane domains of
macular xanthophylls maximize their protective action in the eye
retina.

Solubility
Macular xanthophylls are well soluble in lipid bilayers. The reported

xanthophyll solubility thresholds (concentration of xanthophylls at
which aggregation initiates) in fluid-phase model membranes lie in the
area of 10 mol% for zeaxanthin and 15% for lutein [31], but values as

high as 17 mol% [32] and 28 mol% [33] have been reported. A lower
value such as 5 mol% was also reported for zeaxanthin incorporated
into unilamellar vesicle formed with dipalmitoylphosphatidylcholine
[34]. Non-polar β-carotene starts to aggregate at a concentration as
low as 0.5 mol% [35]. Mono-polar β-cryptoxanthin is also less soluble
in the lipid bilayer than macular xanthophylls [27]. Interestingly, the
tendency of cis-isomers of xanthophylls to aggregate is usually much
less than their all-trans counterparts [36,37], and they also affect
membrane properties more strongly [38]. Based on the solubility
measurements, we can make a first conclusion: the high membrane
solubility of macular xanthophylls is one of the major characteristics
that distinguish them from other dietary carotenoids.

There are two problems which we would like to mention here. The
first is dealing with terminology. In earlier papers the terms
“solubility” and “incorporation” were often used interchangeably. In
our discussion we use the term “solubility” to refer to the amount of
carotenoids dissolved in the lipid bilayer as monomers, while the term
“incorporation” refers to the amount of carotenoids present in the
lipid bilayer in the form of monomers, dimers, oligomers and
aggregates. Socaciu et al. [39] measured the incorporation ratio of
different carotenoids in different membranes. They found high
incorporation for xanthophylls and low incorporation for β-carotene.
The second problem is dealing with the membrane preparation. To the
best of our knowledge, in most, if not all papers, the solubility and
aggregation of carotenoids were investigated in membranes prepared
using the film deposition method [40] or some variations of this
method. During membrane preparations using the film deposition
method, the lipid mixture passed through the solid-state intermediate
at which solid-state demixing of carotenoids can occur. Carotenoid
molecules, which can be trapped in carotenoid aggregates during this
preparation, do not participate in further liposome formation
producing false estimates of carotenoid solubility thresholds. This can
explain large scattering of data about carotenoids solubility in lipid
bilayers. This problem was faced during measurements of cholesterol
solubility in model membranes and was solved with the new method
of membrane preparation, namely the rapid solvent exchange method
[41,42].

Transmembrane localization
The transmembrane localization of a significant portion of macular

xanthophylls in retinal cells seems to be obvious [43-48]. The presence
of polar hydroxyl groups at the ends of macular xanthophyll molecules
(Figure 1) ensures their perpendicular or close to perpendicular
orientation in the bilayer. Non-polar carotenoids are oriented rather
randomly [49]. Macular xanthophylls with this transmembrane
orientation and high membrane solubility affect membrane properties
strongly. In particular, they decrease membrane fluidity [27,45,46,50],
especially decreasing strongly the frequency of vertical fluctuations of
the terminal methyl groups of alkyl chains toward the membrane
surface [51]. At a high concentration, macular xanthophylls induce
formation of the liquid-ordered phase in model membranes [50], an
action similar to that caused by cholesterol [52]. They also cause a
considerable increase of hydrophobicity of the membrane interior
[53], which strongly affects ion penetration into the membrane. Most
significantly macular xanthophylls reduce the oxygen concentration
and oxygen diffusion at all locations in the membrane [50,54]. This
effect will be discussed in Section: Oxygen concentration and
diffusion.
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The changes in the membrane properties should affect chemical
reactions occurring within the lipid bilayer. Often these changes make
membranes less sensitive to oxidative damage (these problems are
discussed in a review [55] and in Section: Xanthophylls impede light-
induced damage to retina). The transmembrane localization of
macular xanthophylls in retinal membranes can also explain their very
slow removal from the retina, observed after discontinuation of
xanthophyll supplements given to healthy volunteers [56]. These
observations suggest that anchoring xanthophyll molecules at opposite
membrane surfaces is significant not only in enhancing their effects on
membrane properties [27,47,48], but also in stabilization of these
molecules in membranes of the human retina. Thus, we can
summarize: transmembrane orientation of macular xanthophylls
distinguishes them from other dietary carotenoids, enhances their
stability in retina membranes, and maximizes their protective action in
the eye retina.

Distribution between membrane domains
In the above sections we emphasized effects of membrane modifiers

(macular xanthophylls) on membrane properties. These effects can
change drastically with membrane composition and depth in the lipid
bilayer [27]. Also the membrane itself, especially membrane lateral
organization into membrane domains, can affect lateral distribution of
membrane modifiers, including macular xanthophylls. It has been
shown that in membranes of retinal pigment epithelium and
photoreceptors, raft domains are present [57-60]. Raft domains have
been postulated to enhance signal transduction [61-63], and are also
involved in lipid sorting [64] and protein trafficking/recycling [59,65].
Rafts in membranes of photoreceptor cells are involved in regulation
of the G-protein-mediated pathway of photo-transduction [59].
Aggregation of small, unstable rafts in bigger platforms (observed, for
example, in retinal pigment epithelium cells) is supposed to enhance
signal transduction to the cell interior and cause a specific reaction in
the cell, such as apoptosis [66].

Raft domains in photoreceptor outer segment (POS) disc
membranes are surrounded by the bulk lipid domain rich in long
chain polyunsaturated fatty acids including docosahexaenoic acid
(DHA) with a six double-bond chain [8,67,68]. Also, rhodopsin, which
is the main protein of POS membranes and is responsible for the first
stages of visual signal transduction, is located in the bulk domain of
the POS membrane [57,58,68,69]. Rhodopsin requires the presence of
polyunsaturated lipids (DHA) for its activity [70-72], and thus their
co-localization is functionally justified. In the model of POS
membranes, macular xanthophylls were about 14 times more
concentrated in the bulk domain (enriched in polyunsaturated DHA)
and were substantially excluded from the raft domain (enriched in
saturated lipids and cholesterol) [26] (Figure 2). This unique
distribution was confirmed in membranes made of a raft-forming
mixture where macular xanthophylls were about eight times more
concentrated in the bulk domain than in the raft domain [73]. A
similar distribution has been observed for mono-polar xanthophyll,
namely β-cryptoxanthin. However, non-polar β-carotene was more
uniformly distributed between domains [24]. These results strongly
support statements that in POS membranes macular xanthophylls will
also be concentrated in the bulk domain and excluded from the raft
domain. Such a selective accumulation of macular xanthophylls in
domains rich in vulnerable unsaturated lipids seems to be ideal for
their antioxidant action [24]. Thus, we can hypothesize that co-
localization of macular xanthophylls, polyunsaturated phospholipids,
and rhodopsin in POS membranes (Figure 2) may enhance the

antioxidant action of xanthophylls. This hypothesis was confirmed by
experiments in which the protective role of lutein against lipid
peroxidation in membranes made of raft forming mixtures and in
models of POS membranes was compared to lutein antioxidant action
in homogenous membranes composed of unsaturated lipids [74].

Figure 2: Schematic drawing showing the distribution of macular
xanthophylls between the saturated raft domain and the
unsaturated bulk domain in membranes of POSs. Rhodopsin is also
included to show its co-localization with unsaturated lipids and
xanthophylls.

Figure 3: Comparison of the antioxidant activity of the macular
xanthophyll, lutein, in raft-domain-containing and homogeneous
membranes. Antioxidant activity is expressed as (A) a ratio of the
rate of lipid hydroperoxide accumulation in membranes in the
absence and presence of 0.1 mol% lutein, as a ratio of the oxygen
consumption rate in membrane suspension in the absence and
presence of (B) 0.3 mol% and (C) 0.5 mol% lutein, and (D) as a
ratio of the MDA-TBA adduct accumulation rate in the absence
and presence of 0.5 mol% lutein. Homogeneous membranes were
made of dioleoylphospatidylcholine (DOPC) (A, B, and C) and
didocosahexaenoylphosphatidylcholine (DHAPC) (D). Raft-
domain-containing membranes were made of DOPC/
sphingomyelin/cholesterol equimolar mixtre (A, B, and C) and
DHAPC/distearoylphosphatidylcholine/cholesterol equimolar
mixture (D). For more details see Ref. [74].
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The rate of lipid peroxidation was inhibited in the presence of
lutein, and inhibition was significantly greater in membranes
containing raft domains than in homogenous membranes (Figure 3).
We can conclude: the domain structure allows location of macular
xanthophylls in the most vulnerable regions of POS membranes. This
localization is ideal if macular xanthophylls are to act as a lipid
antioxidant, which is the most accepted mechanism through which
lutein and zeaxanthin protect the retina from AMD [75-78].

Xanthophylls Impede Light-induced Damage to Retina

Light absorption
There are two main functional explanations for the selective

presence of lutein and zeaxanthin in the retina. One is the necessity of
photoprotection against the oxidative stress and macular xanthophylls
serve that role very well. Another functional hypothesis is based on the
fact that the pigments are localized mostly in the outer plexiform also
known as Henle’s layer [43] and therefore form a filter for blue light.
Most ultraviolet below 300 nm is absorbed by cornea [78], whereas
ultraviolet in range 300-400 nm is blocked by the lens. Light
transmission by the lens decreases with ageing, particularly at shorter
wavelengths [79]. Nevertheless, some fraction of blue radiation reaches
the retina and may activate potent photosensitizers retinal
photosensitizers such as all-trans retinal, cytochrome c oxidase,
porphyrins [80-83], and consequently generates reactive species.
Macular xanthophylls, due to their appropriate location, may
significantly reduce macular blue-light toxicity on the retina and
improve protection against oxidative damage. Blue-light absorption
can be considered an indirect antioxidant action because it prevents
blue light from generating reactive oxygen species that can damage
photoreceptor cells [84].

It is well known that carotenoids in form of monomers absorb light
in range 390 nm-540 nm with maximum absorption in the region of
450 nm, whereas in form of aggregates maximum absorption may be
shifted to lower wavelength. In the case of “card-pack” arrangement
(H-aggregates) the shift to the shorter wavelength is observed (blue
shift). In the case of “head-to-tail” organization (J-aggregates) the shift
to the longer wavelength is observed (red shift). In lipid bilayers
macular xanthophylls can be present as monomers or can form H-
aggregates with blue-shifted absorption spectrum (Figure 4). Junghans
et al. [85] has investigated the blue-light filter efficiency of four plasma
carotenoids (lutein, zeaxanthin, β-carotene, and lycopene)
incorporated into membranes of liposomes loaded with the
hydrophilic fluorescent dye, Lucifer yellow, excitable by blue light.
Fluorescent emission of the dye was lower in liposomes with
carotenoids as compared to the control, indicating filter effect.
Macular xanthophylls zeaxanthin and lutein exhibited the highest
blue-light absorption activity as compared with liposomes containing
non-polar carotenoids, β-carotene, and lycopene.

Blue-light absorption by macular xanthophylls is extremely
important for young eyes, for which the lens transparency is almost
95%. During aging the lens gradually loses its transparency, become
yellowish [79], and better filtrate UV and blue light. Thus, in older age
the blue-light filtration performed by macular xanthophylls becomes
relatively less important.

Macular xanthophylls may not only act as a blue-light filter, but also
optimize visual performance. The layer of macular xanthophylls is

believed to reduce chromatic aberrations, glare disability, and light
scattering which enhance vision contrast [86].

Figure 4: Schematic drawing of the location of macular
xanthophylls in the lipid bilayer membrane. Monomers and H-
aggregate are indicated together with their absorption spectra.

Physical quenching of reactive oxygen and photosensitizers
Carotenoids have been known to be the most effective singlet

oxygen quenchers and their activities are much higher than that of
another retinal antioxidant pigment α-tocopherol [18,87]. They are
able to quench singlet oxygen by two different mechanisms. The first
mechanism, which involves energy transfer, termed physical
quenching, is considered the major pathway of singlet oxygen
deactivation. According to this mechanism carotenoid molecules
deactivate singlet oxygen to the nonreactive triplet state. During that
process carotenoid molecules become excited to the triplet state and
can return to the ground state dissipating the energy excess as heat.
The profit of the physical quenching is that carotenoids may act
without alternation of their own chemical structure. The second
mechanism is called chemical quenching. It involves a chemical
reaction between carotenoid and singlet oxygen which results in
pigment autooxiadation. The capacity of major plasma carotenoids to
quench singlet oxygen in an organic solvent mainly depends on the
number of conjugated double bonds in the chromophore, but also
varies with functional groups [23]. Thus, zeaxanthin (11 conjugated
double bonds) has a higher ability to quench singlet oxygen than lutein
(10 conjugated double bonds) (Figure 1).

Macular xanthophylls may quench singlet oxygen directly because
their triplet energy level is lower than the energy level of singlet
oxygen. They are also capable of quenching excited triplet states of
potent singlet oxygen photosensitizers. That property is well known as
non-photochemical quenching in plants. By this mechanism the
largest part of excess energy is transferred from potentially harmful
chlorophyll triplets to lutein and dissipated as heat [88,89]. Similarly,
photoactivation of rhodopsin (also located in the unsaturated bulk
domain, see Section: Distribution between membrane domains) leads
to isomerization of its chromophore, 11-cis-retinal to all-trans-retinal,
which under certain conditions can act as a photosensitizer. Free all-
trans retinal may absorb light and transfer energy from its excited
triplet state to molecular oxygen, generating singlet oxygen [90]. Close
proximity of xanthophylls, which are also located in the bulk domain,
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allow effective energy transfer from excited all-trans-retinal to
xanthophyll and prevent singlet oxygen generation by this
photosensitizer [91]. We would like to summarize this section
indicating: the membrane domain structure plays a significant role in
the enhancing protection of retina against oxidative damage through
the co-localization of macular xanthophylls with harmful molecules
(singlet oxygen) and harmful processes (formation of singlet oxygen
and formation of photosensitizers).

Chemical antioxidant action
Carotenoids effectively quench singlet oxygen through physical

quenching (see Section: Physical quenching of reactive oxygen and
photosensitizers). However, inactivation of that harmful molecule may
also occur through chemical quenching involving carotenoids
autoxidation. This latter process consumes carotenoids themselves.
Chemical quenching contributes less than 0.05 % to the overall singlet
oxygen quenching by carotenoids [92]. The degradation of four major
plasma carotenoids, induced by UV light in presence of rose Bengal,
has been studied [93,94]. The higher degradation rates were found for
non-polar carotenoids as compare to macular xathophylls. Also
studies of the autooxidation of carotenoids incorporated in pig liver
microsomes [95] give similar results, non-polar carotenoids such as β-
carotene and lycopene had degraded totally, whereas the degradation
of polar carotenoids was much slower, and zeaxanthin was shown to
be the most stable carotenoid. We can conclude: high chemical
stability of macular xanthophylls distinguish them from other dietary
carotenoids.

The conjugated double bond system is primarily responsible for
high chemical reactivity of carotenoids with both singlet oxygen
[23,87] and free radicals [96]. Selective localization of macular
xanthophylls in domains rich in polyunsaturated phospholipids (see
Section: Distribution between membrane domains), and therefore
susceptible to a free radical-induced damage, is ideal for their chemical
antioxidant action. Carotenoids scavenge lipid peroxyl radicals by
forming radical adducts [96] which are less reactive than lipid alkyl
peroxyl radicals. Thus, carotenoids are effective chain-breaking
antioxidants, which delay the oxidation of bio-membranes by trapping
the chain-initiating or chain-propagating peroxyl radicals.

Interesting conclusions, which fit to the goal of this review, can be
made by comparison of the antioxidant properties of macular
xanthophylls with antioxidant properties of other dietary carotenoids
investigated in organic solvents and in lipid bilayer membranes. For
example, zeaxanthin and non-polar β-carotene show similar
antioxidant properties in organic solutions. However, their
antioxidant properties differ when incorporated into membranes [97].
Zeaxanthin was shown to react with free radicals slightly more
effectively than β-cryptoxanthin and much more effectively than β-
carotene [98,99]. β-Carotene and lycopene are able to react efficiently
only with radicals generated inside the membrane. Macular
xanthophylls, with their hydroxyl groups exposed to an aqueous
environment, can also scavenge free radicals generated in the aqueous
phase [37].

Antioxidant activity of carotenoids can be related to their effects on
physical properties of lipid bilayer membranes [100]. Strong ordering
effect of the dipolar xanthophyll, astaxanthin, is accompanied by its
strong antioxidant activity. Non-polar carotenoids like β-carotene and
lycopene, which disorder the membrane, acted as relatively poorer
antioxidants than the xanthophylls. β-Carotene, because of its low
membrane solubility as a monomer and low incorporation efficiency,

and, therefore, weak effects on membranes—does not protect
membranes against lipid peroxidation. Although at oxygen tensions
close to 1 atm it may act as a prooxidant [101]. However, these
conditions are not relevant for retina and other human tissues and
organs. Above examples allow us to conclude: the presence of polar
hydroxyl groups at the ends of macular xanthophylls and their
transmembrane orientation enhance their antioxidant properties, as
compared with the antioxidant properties of other dietary carotenoids.

Oxygen concentration and diffusion
The microenvironment in which membrane-located reagents are

immersed can change drastically with membrane composition and
depth in the lipid bilayer [55]. Oxygen is involved in most important
damaging chemical reactions within the membrane which include
lipid peroxidation and the formation of reactive oxygen species and
the oxidative damage is postulated to be a major cause of AMD [102].
Additionally, antioxidant action of macular xanthophylls is mainly
confined to the membrane environment. All these indicate that the
effect of the microenvironment on the local oxygen concentration and
local oxygen diffusion coefficient should modulate damaging and
protective reactions involved in AMD. Thus, knowledge of profiles of
oxygen concentration and oxygen diffusion across membranes or
membrane domains is extremely important.

One of the authors (WKS) was involved in the development of a
spin-label oximetry method which allows measurement of the oxygen
diffusion-concentration product in restricted domains such as
membranes, or more accurately, at a certain depth in membranes
[103,104]. This product is of fundamental interest for understanding
chemical reactions involving oxygen, and separation into its
component factors (the diffusion coefficient and concentration) is not
necessary. These results are usually presented as profiles of the oxygen-
diffusion concentration product across membranes. Membrane
modifiers affect profiles of this product differently in different
membrane regions and membrane domains. For example, cholesterol
significantly decreases the oxygen diffusion-concentration product in
the polar head group region and in the hydrocarbon region near polar
head groups, and increases it in the membrane center [52,105,106]
(Figure 4A). Macular xanthophylls decrease the oxygen diffusion-
concentration product in saturated and unsaturated membranes
[54,27]. The effect is strongest in the membrane center and negligible
in the head group region. At 10 mol% macular xanthophylls decrease
the diffusion-concentration product in the center of lipid bilayer
membranes by 30% (Figure 4B).

The effect of carotenoids on the oxygen-diffusion concentration
product can have physiological significance for organisms with a high
carotenoid content in their membranes, for example, for bacteria, and
in some situations, for plants, in which the local carotenoid
concentration in the lipid bilayer can reach a value up to a few mol%.
In animals, the highest carotenoid concentration is found in the eye
retina of primates, but even here the carotenoid concentration in the
lipid-bilayer portion of the membrane is much lower than 1 mol%
[43]. Figure 5, however, illustrates profiles of the oxygen diffusion-
concentration product in membranes in the presence of different
membrane modifiers. The different effects of cholesterol and polar
carotenoids on oxygen transport can result from different structures
and different localization of these molecules in the membrane. The
cholesterol molecule is located in one half of the bilayer, and its rigid
plate-like portion extends to the depth of the 7th to 10th carbon atoms
in lipid hydrocarbon chains [107]. In contrast, one carotenoid
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molecule influences both halves of the lipid bilayer and, with two polar
groups interacting with opposite hydrophilic surfaces of the
membrane; it can brace together the two halves of the bilayer like a tie-
bar [108]. Therefore, the oxygen diffusion-concentration product is
reduced in those regions of the bilayer to which the rigid portion of the
molecule of the modifier extends (see schemes in Figure 4).

In retina membranes macular xanthophylls are mainly located in
the bulk membrane domain with the profile of the oxygen diffusion-
concentration product similar to upper profile in Figure 4A. They are
substantially excluded from the raft domain with the profile of the
oxygen diffusion-concentration product similar to lower profile in
Figure 4A. Oxygen environment is very different in both situations.
Thus, macular xanthophylls are localized in the membrane domain
which is extremely susceptible to lipid peroxidation not only because it
is rich in polyunsaturated DHA but also because the oxygen diffusion–
concentration product is two to four times greater in the bulk domain
than in the raft domain [26], which makes polyunsaturated lipids
located in the former domain even more susceptible to oxidative
damage.

Figure 5: Profiles of the oxygen diffusion-concentration product
across the dimyristoylphosphatidylcholine membrane measured at
25°C in the absence (○) and presence (●) of 50 mol% cholesterol
(A) and 10 mol% zeaxanthin (B). Measurements in (A) were done
using saturation-recovery EPR approach with phospholipid-type
spin labels. Measurements in (B) were done using line-broadening
EPR approach with stearic acid spin labels (SASLs). Approximate
locations of the nitroxide moieties of spin labels are indicated by
arrows. The nitroxide attached to C16 may pass through the center
of the bilayer and stay in the other leaflet of the membrane.
Schematic drawings indicate relative positions of membrane
modifiers (cholesterol and zeaxanthin) in the lipid bilayer. Figure
was made based on data presented in [52] and [54].

Generation of singlet oxygen straightforwardly depends on the local
oxygen-diffusion-concentration product. A good example related to
the xanthophyll protection of the retina membranes is the generation
of singlet oxygen by the photosentitizer, all-trans-retinal (as described

in Section: Physical quenching of reactive oxygen and
photosensitizers). High oxygen diffusion-concentration product in the
bulk domain of POS membranes should increase photoproduction of
singlet oxygen during collisions of molecular oxygen with all-trans-
retinal. The presence of macular xanthophylls in this, highly
oxygenated domain, reduces oxidative damage. We can conclude: the
membrane domain structure plays a significant role in the protection
of retina membranes against oxidative damage through the co-
localization of potentially harmful molecules (molecular oxygen) with
protective molecules.

Concluding Remarks
The diagram in Figure 6 summarizes our conclusions indicating

major macular xanthophyll-membrane interactions, which can
modulate or enhance their protective antioxidant actions in retina.
Macular xanthophylls are highly soluble in lipid membranes with the
preferential transmembrane orientation. These ensure both, physical
and chemical stability of these carotenoids in the retina. Physical
stability is manifested by their very slow removal from the retina,
observed after discontinuation of xanthophyll supplementation.

Figure 6: Diagram indicating how the lipid bilayer membrane and
its domain structure affect the organization of macular
xanthophylls within the membrane and how this xanthophyll
organization affects their protective activity in membranes of POSs.

Macular xanthophylls, when located in lipid bylayer membranes,
are also degraded more slowly than other dietary carotenoids, thus are
chemically more stable. We think, however, that the most significant
consequence of macular xanthophyll-membrane interaction is their
selective accumulation in the bulk domain of the POS membrane.
Rhodopsin is also located in the bulk domain of the POS membrane.
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Additionally, this domain is enriched in long-chain polyunsaturated
phospholipids (C18-C24), as well as in very-long-chain
polyunsaturated phospholipids (> C24) with 3-9 double bonds
[109,110]. It has been suggested that very-long-chain polyunsaturated
phospholipids likely play a unique, important role in the retina
because they are necessary for cell survival and their loss leads to cell
death [111,112]. It has been also suggested that they are tight-bound to
rhodopsin, and that their unusually long chains may partially
surround the α-helical segments of rhodopsin [113]. Co-localization of
rhodopsin with polyunsaturated phospholipids creates a dangerous
situation for both, especially during illumination when reactive oxygen
species can be produced by photosensitizers. To protect the retina
against oxidative damage, nature has used xanthophylls as an effective
protector that can absorb damaging blue light, neutralize
photosensitizers and reactive oxygen species, and scavenge free
radicals. Co-localization of protective and protected molecules should
significantly enhance the effectiveness of protectors, especially when
the local concentration of xanthophylls in the membrane is not very
high.
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