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Short Commentary
While seedlings of large-seeded plants are considered to withstand 

resource restrictions and abiotic stresses more efficiently, plants with 
small seed sizes are considered more efficient colonizers due to their 
ability to produce greater numbers of seeds. On the other hand, seed 
size can be altered intraspecifically in response to environmental cues 
[1]. Ecologists and evolutionary biologists had early observed this 
phenomenon [1-4]. However, it is largely unknown the mechanism 
underlying why are seedlings of large-seeded plants considered 
to withstand drought stresses efficiently. We found Arabidopsis 
ARF2 (Auxin Response Factor2), ANT(AINTEGUMENTA) and 
COR15A(COLD-REGULATED15A) are important regulators of both 
drought tolerance and seed mass, and the ARF2 transcription repressor 
negatively regulates the ANT gene through binding directly to its 
promoter, in turn, the ANT transcription factor positively modulates 
the expression of the COR15A gene by binding directly to its promoter. 
Genetic evidence indicates ARF2-ANT-COR15A forms ABA (abscisic 
acid) signaling-mediated gene cascade for regulation of both drought 
tolerance and seed mass, which has cross talk with the auxin signal 
pathway. Together, our proposed model provides a better understanding 
of seed mass and drought tolerance regulation, which may in turn lead 
to better increased crop yield and crop breeding [1]. 

In this model, what signaling molecule performs a key relationship 
between drought tolerance (stress) and seed mass (growth and 
development)? We found that the phytohormone abscisic acid (ABA) 
plays a key role. ABA is required for normal plant growth. Many 
genotypes with mutations in DNA replication present phenotypes 
that are hypersensitive to ABA during seed germination and seedling 
growth [5], suggesting that ABA signaling might repress cell division 
via modulating DNA replication-related proteins. ABA is also a key 
regulator of plant responses to environmental cues, including drought, 
cold, and salt [6]. Drought and salt stresses can lead to the accumulation 
of ABA, triggering many adaptive responses [7]. For example, under 
water-deprived conditions, ABA induces stomatal closure and can lead 
to decreased transpirational water loss [8]. Therefore, in plants, ABA is 
both endogenous developmental signaling and stress signaling. Under 
normal physiological condition, low concentrations of ABA can boost 
root growth through both the promotion of the quiescent center and 
the inhibition of stem cell differentiation. However, high concentrations 
of ABA can suppress root growth by suppressing cell division [9]. Our 
observation in leaf development also support this notion [1]. Together, 
in our model, ARF2 transcription repressor integrates ABA signals into 
regulatory of seed mass and drought tolerance by negatively modulating 
ANT-mediated regulation of COR15A genes. 

The loss-of-function mutant of ARF2 presents a pleiotropic 
phenotype, showing an enhanced growth of aerial organs and seed size 
as a result of extra cell division, the inhibition of floral bud opening, 
and the delay in flowering, leaf senescence, floral organ abscission, 
and silique ripening [10-12]. ANT encodes a transcription factor of 
the AP2-domain family [13], and its loss-of-function mutant presents 
the decrease in the number and size of floral organs, as well as the 
defect in the initiation and growth of the integuments during ovule 
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development. ANT regulates the mass of seeds and organs through 
cell proliferation by maintaining the meristematic competence of cells 
during organogenesis [14]. We also found that ANT is an important 
factor of regulating salt stress . Recently, our reports revealed that 
ARF2-ANT-COR15A form a ABA signal-mediated gene cascade for 
regulating both drought tolerance and seed mass. Together, this work 
presents a large body of work and provides a new insight on the link 
between auxin and ABA in seed size and abiotic tolerance regulation, 
and thus this is original and relevant study with important impacts for 
the basic science as well as agriculture [1]. 

Similar to this study, currently we reported that ANGUSTIFOLIA3 
(AN3), a transcription coactivator, regulates Arabidopsis plant 
drought tolerance by modifying root system and stomatal density via 
transrepressing YODA expression [15,16]. We also found that AN3 
modulates seed mass (our unpublished data). Thus, AN3 integrates an 
unknown signal into seed mass and drought tolerance by negatively 
modulating YODA-mediated regulation.

Taken together, our current research not only demonstrated 
the first direct evidence for ARF2 mediated both seed mass and 
drought tolerance by negatively regulating the expression of ANT 
and COR15A, enriched the regulation network of both seed mass and 
drought tolerance, but also provided a novel insight in understanding 
the mechanism underlying why are seedlings of large-seeded plants 
considered to withstand drought stresses efficiently [1]. However, it 
remain unknown how ABA signaling induces the activity of ARF2 
and ANT, and what relationships between ABA receptors and ARF2 
or ANT. It is possible that ARF2 or ANT has a similar function to ABA 
receptors and its function is independent of ABA receptors. Thus, 
further research is necessary to discover the mystery of ARF2 or ANT 
in mediating both seed mass and drought tolerance with ABA signaling.
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