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Androgen steroid hormones, including testosterone and 
dihydrotestosterone, are produced by the male gonads and have 
substantial effects on almost every system of the male body including 
development of the sex-accessory glands, in particular, the prostate. 
During male sexual differentiation, androgens are necessary to properly 
pattern the embryonic prostate buds. Androgens are continuously 
important for adult prostate function and homeostasis. In the adult 
prostate, androgens are involved in regulation of inappropriate 
prostate growth during benign prostate hyperplasia and contribute to 
progression of prostate cancer. On the other hand, a number of studies 
indicate that androgen signaling is necessary to promote prostate 
induction and differentiation but is dispensable for glandular growth 
and branching. Thus, what is the role of androgens in development of 
the prostate? What are they important for and what not?

Androgens signal by activating the androgen receptor (AR), 
a member of the nuclear receptor family. The androgen-AR 
complex translocates to the nucleus and functions as a positive or 
negative transcriptional regulator for a multitude of cell cycle and 
differentiation factors. In male embryos, levels of androgens in 
the urogenital sinus mesenchyme are considerably higher then in 
females. Dihydrotestosterone has been found bound to the AR in the 
male urogenital mesenchyme indicating pathway activation [1-3]. 
The importance of androgens in prostate development is confirmed 
by reduction of prostate buds in feminized Tfm males that have a 
spontaneous AR mutation severely reducing its affinity to testosterone 
[4-6]. Allgeier et al. [6] showed that androgens regulate prostate 
bud specification and dorsal-ventral patterning. Exposure of wild 
type female, or Tfm male, embryos to dihydrotestosterone results in 
a masculine-like growth of prostate buds. Thus, at the early stage of 
prostate development androgens function to properly pattern male 
prostate buds. This androgen function is mediated by upregulation 
of the homeobox factor Nkx3.1 [6-8] and, possibly, by interaction 
with Foxa1/2 genes [9]. In addition, Vezina et al. [10] showed that 
dorso-ventral patterning of the prostate is regulated independent of 
androgens by the aryl hydrocarbon (dioxin) receptor pathway. 

The three stages of prostate development include formation of 
epithelial prostate ductal buds, elongation and branching of prostate 
chords, and canalization and differentiation of the ducts into func-
tional secretory units [11,12]. Genes and signaling pathways implicat-
ed in branching morphogenesis of the prostate are basically the same 
as those in the lungs and sex-independent glands, such as the lacri-
mal gland [13-20]. What makes morphogenesis of the male accessory 
glands unique is the fact that their induction and certain cell survival 
are dependent on androgens. Branching morphogenesis is a process 
of a repetitive induction and suppression of bud formation regulated 
by paracrine signaling between the gland epithelium and mesenchyme. 
Both steroid-independent and dependent bud induction and branch-
ing is positively regulated by the Fibroblast growth factor 10 (Fgf10) 
and inhibited by Bone morphogenetic proteins (Bmps) [12,16-20]. In 
the prostate, androgens are not involved in a direct regulation of ei-
ther positive (Fgf10) or negative (Bmps) master regulators of branch-
ing morphogenesis [12,16,17,20]. This supports the notion that pros-
tate branching is hormone-indifferent. Contrary to that, elongation 

of prostate buds, is dependent on mesenchymal androgen signaling 
which functions to upregulate expression of Sonic hedgehog levels in 
the prostate bud regions [21]. Unlike the lungs where growth factor re-
ceptors can drive budding and branching morphogenesis from an iso-
lated lung epithelium in culture [22], initiation of prostate epithelium 
branching requires contact between the epithelium and mesenchyme 
[2,3,11]. It is of interest that during prostate induction and elongation, 
AR signaling specifically targets the mesenchymal prostate compart-
ment [1,23]. Androgen-responsive epithelial-mesenchymal signaling 
pathways in the prostate include the Wnt, Insulin growth factor and 
Notch [24,25]. Bmps serve an important inhibitory function in pros-
tate branching, in part, by restricting activity of the Notch receptor to 
prostate bud domains [12,16]. During development Notch signaling 
inhibits cell growth suppressor, Pten, and promotes proliferation of 
p63-positive basal epithelial progenitors [26]. Notch signaling is also 
necessary for prostate smooth muscle differentiation [26]. Activation 
of Notch signaling in prostate buds results in expression of transcrip-
tional repressors Hey1, which is a co-factor of the AR and negatively 
regulates AR targets [27]. Thus, prostate bud formation and elongation 
likely involve a transient inhibition of AR-dependent epithelial differ-
entiation. There is also an indication that androgens regulate sexually 
dimorphic expression of Wnt molecules in the prostate [24]. Wnt/β-
catenin signaling can support prostate growth even in the absence of 
androgens [28,29]. However, canonical Wnt signaling is also known 
to inhibit branching [30]. Thus, the roles of different Wnts in pros-
tate development and homeostasis require further investigation to dis-
criminate between the canonical and non-canonical functions. An in-
triguing possibility is that androgens may not be necessary for prostate 
growth and branching once the bud is induced. Indeed, experiments 
by Donjacour and Cunha [31] in neonatal mice showed that prostatic 
ductal morphogenesis is sensitive to but does not require continuous 
androgen stimulation. Studies by Wu et al. concur that AR signaling 
promotes secretory differentiation but not growth or branching in the 
prostate [25].

An important androgen function is to promote prostate-specific 
differentiation of the luminal epithelium and expression of secretory 
proteins [11,25,32,33]. Androgen deprivation in adult males, due 
to surgical or chemical sterilization, or treatment with androgen 
antagonists, results in a dramatic increase in programmed cell death 
in the distal portions of the prostate and shrinkage of the gland to 
about 25% of its normal size [29,34-37]. The predominant increase in 
cell death in the distal luminal secretory epithelium can be considered 
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to indicate a link between androgen-directed cell fate choice and 
lineage survival properties. However, this hypothesis has not gathered 
sufficient experimental support. Instead, analysis by Buttyan et al. [38] 
point that androgen deprivation causes a dramatic regression of the 
prostatic vascular system and that cell death in the prostate tissue is a 
result of a hypoxic response. 

In summary, current understanding of prostate development 
indicates that although androgens are important for prostate 
induction and homeostasis, they are unlikely to be directly involved 
in executing prostate growth and branching programs. This does not 
preclude a possibility that androgen signaling ensures patterning and 
survival of particular prostate progenitor cells in the prostate epithelial 
buds and adjacent mesenchyme which then carry out the branching 
morphogenesis program by activating developmental mechanisms. 
Investigations into prostate development hold substantive translational 
value. A better understanding of prostate development not only 
promises to improve comprehension of how androgens pattern the 
male body plan, but may also shed light on the mechanisms of androgen 
function during inappropriate prostate overgrowth in benign prostatic 
hyperplasia and prostate cancer.
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