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Abstract
Background: Recent data suggest that the weight loss-associated increase in the osteoblast-specific peptide 

osteocalcin (OC) might be related, not to increased bone formation, but to the endocrine action of OC enhance to 
both pancreatic insulin secretion and insulin sensitivity of target tissues. Thus, the purpose of the present study was 
to examine the possible role of serum OC as a regulator of glucose homeostasis following weight loss in sedentary 
overweight or obese women. 

Methods: This study was a post hoc analysis of three independent weight-loss intervention studies, which 
varied in weight-loss magnitude and duration. Serum glucose, insulin, bone formation (OC and bone-specific alkaline 
phosphatase, BAP) and resorption (C-terminal peptide of type I collagen, CTX) markers were measured before and 
after weight loss in sedentary overweight or obese women (n=77) and were compared with data from active, lean 
controls (n=46). 

Results: Fasting insulin, glucose and HOMA-IR significantly improved with weight loss. OC and CTX increased 
significantly following weight reduction, while BAP remained unchanged. The percent increase in OC was positively 
associated with the magnitude of the weight loss (r=0.25, p=0.02), while the increase in CTX was not (r=0.10, p=0.26). 
Following weight loss, serum OC was negatively associated with fasting glucose (r= -0.232, p=0.02), and weight-loss-
associated changes in serum OC were positively correlated with changes in HOMA2-%B (r=0.33, p=0.04). 

Conclusions: These preliminary results suggest that OC might play a role in the improvements in glucoregulation 
observed following weight reduction in overweight, sedentary women.
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Introduction
Insulin resistance, an impaired response of target tissues to 

circulating insulin, is a key component of the metabolic syndrome 
[1]. Obesity, in particular an increase in visceral adipose tissue mass, 
exacerbates insulin resistance through a variety of mechanisms, 
including secretion of adipokines [2] that impair insulin sensitivity in 
other target tissues, such as skeletal muscle, liver, and pancreas [3]. Very 
recent evidence suggests that bone, like adipose tissue, is an endocrine 
organ that participates in the regulation of glucose homeostasis [4]. The 
osteoblast-specific peptide osteocalcin (OC) increases insulin secretion, 
enhances insulin sensitivity in the liver, adipose tissue and skeletal 
muscle, and reduces accumulation of adipose tissue in genetically 
modified animals [4,5]. 

In our previous studies of the effects of weight reduction on bone 
mass and turnover in overweight adults, we have consistently observed 
that weight reduction increases serum osteocalcin (OC), which is widely 
used as a serum marker of bone formation [6]. In independent weight-
loss intervention studies that varied in both duration and magnitude 
of weight reduction, we observed increases in OC ranging from ~15 to 
40% [7-9]. However, explaining these observations has been difficult 
for two reasons: bone formation, as measured by serum markers, is 
decreased by both acute and chronic negative energy balance [10,11]; 
and, bone mass is reduced with weight loss [12]. Recent data suggest 
that the increases in OC observed with weight loss might be related, 
not to increased bone formation, but to the endocrine function of OC 
as a hormone that increases pancreatic insulin secretion and insulin 
sensitivity of target tissues [4,13]. Thus, the purpose of the present 
study was to investigate whether the increase in OC observed following 

weight loss in overweight women might be related to its function as a 
regulator of glucose homeostasis. 

Materials and Methods
Study design and study participants

The present study is a post hoc analysis of data collected during 
three previously published weight-loss intervention studies [8,15]; only 
the women (n=77) who participated in the earlier studies were included 
in this secondary data analysis to avoid confounding by potential sex 
differences. In addition, data from active, lean women (n=46) were 
included as a normal reference ([14]; and our unpublished data). Thus, 
the total sample (n=123) included both sedentary overweight or obese 
subjects (n=77) and active, lean controls (n=46); the characteristics of 
the study participants are shown in (Table 1). All procedures involving 
human subjects were in accordance with the ethical standards of 
the University of Missouri Institutional Review Board, and with the 
Helsinki Declaration of 1975 as revised in 1983. Informed written 
consent was obtained from each subject prior to participation.
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The duration and magnitude of the weight-loss differed among 
studies, as did participant body mass index (BMI) prior to weight 
reduction, as shown in (Table 1). In each study, weight loss was 
achieved via a combination of energy restriction and increased 
exercise-related energy expenditure (e.g., brisk walking), as previously 
described [8,9,15]. 

Outcome measures

Body weight, measured to the nearest 0.05 kg, and height to the 
nearest 0.5 cm, were used to calculate body mass index (BMI, kg/m2). 
Body composition, i.e., percent body fat, was measured via whole 
body DXA scans, as previously described [8,9,15]. Blood was collected 
in the early morning after both an overnight fast and at least a 24-h 
abstention from exercise using a butterfly needle inserted into the 
antecubital vein with the subjects in the seated position. Serum and 
plasma were separated by centrifugation at 4°C for 15 minutes at 2000g 
in a Marathon 2100R centrifuge (Fisher Scientific, Pittsburgh, PA, 
USA) and stored in cryogenic vials at -80°C. The concentrations of OC 
and bone-specific alkaline phosphatase (BAP) in serum were measured 
using commercially available ELISA kits (Quidel, San Diego CA, USA). 
BAP served as a negative control, as, like OC it is a serum marker of 
bone formation [6], but it is not known to regulate insulin sensitivity. 
The anti-OC antibody used in the ELISA recognizes only intact OC; 
therefore, because the antibody does not bind OC fragments, which 
are released during bone resorption, OC measured using this ELISA 
results only from de novo synthesis. Cross reactivity of the anti-
human bone-AP antibody with liver AP is 3-8% and with intestinal 
bone-AP is 0.4%. We also measured serum C-terminal peptide of type 
I collagen (CTX) as a marker of bone resorption using commercial 
ELISA (Immunodiagnostic Systems, Inc., Scottsdale, AZ, USA). All 
OC, BAP, and CTX assays were performed in the same laboratory in 
serum samples that had not been previously thawed with intra-assay 
coefficients of variation (CV) of 3.0%, 4.6%, and 6.4%, respectively. 
The concentrations of glucose and insulin in plasma were measured 
using a commercially available colorimetric assay (Thermo, Arlington, 
TX, USA) and a chemiluminescent immunoassay (Immulite 1000, 
Siemens, New York, NY, USA), respectively. The homeostasis model 

assessment of insulin resistance (HOMA2-IR), β-cell function, and 
insulin sensitivity were calculated from fasting glucose and insulin 
concentrations, as previously described [16,17]. Both β-cell function 
(HOMA2-%B) and insulin sensitivity (HOMA2-%S) are expressed as 
percentages relative to a normal, reference population (100%).

Statistics

Data were analyzed using SPSS statistical software (SPSS/11.0, 
SPSS, Chicago, IL, USA) and statistical significance was set at p ≤ 0.05 
for all tests. Because the weight-loss interventions differed in magnitude 
and duration and in participants’ baseline BMI, the effect of weight 
loss on outcome measures was independently evaluated for each study 
using a one-factor (time, i.e., weight loss) repeated measures ANOVA. 
Comparisons among weight-loss groups and lean controls were 
performed using a one-way ANOVA with post hoc least-significant 
difference (LSD) pair-wise comparisons. Pearson’s correlation was 
used to examine relationships between absolute concentrations and 
weight-loss-associated changes (%) in body weight, OC, BAP, CTX, 
glucose, insulin, HOMA2-IR, HOMA2-%B, and HOMA2-%S (n=77). 
Data are means ± SEM. 

Results
Anthropometric characteristics of the research participants are 

shown in (Table 1). Participants were overweight or obese prior to 
weight loss, which ranged in magnitude from 5 to 19% of initial body 
weight. Fasting glucose, insulin, and HOMA2-IR were significantly 
greater in overweight or obese subjects compared with lean, physically 
active controls, while the lean participants had higher HOMA-S% 
(Table 2). Following weight reduction, fasting glucose and insulin 
concentrations decreased significantly (Table 2).

Pre-weight-loss serum concentrations of OC and BAP in overweight 
or obese participants were less than lean controls (Table 3). Following 
weight reduction, OC increased significantly, but remained lower than 
OC in lean controls (Table 3); CTX also increased significantly following 
weight loss. The percent increase in OC was positively associated with 
the magnitude of the weight loss (r=0.25, p=0.02), while the increase in 

Study N Weight Loss Intervention Timepoint Age (y) Body weight (kg) BMI (kg/m2) Body Fat (%) VO2peak (ml/kg/min)
[8] 24 -19% (12 weeks) Baseline 50.1 ± 1.4 103.2 ± 2.2 38.1 ± 0.7 NA NA

Weight Loss 83.5 ± 2.0* 30.8 ± 4.5* NA NA
[15] 17 -10% (24 weeks) Baseline 40.0 ± 1.6 94.1 ± 2.6 33.6 ± 0.9 39.4 ± 1.1 23.4 ± 3.0

Weight Loss 85.5 ± 2.4* 30.6 ± 3.8* 36.2 ± 1.1* 27.5 ± 1.6
[8] 36 -5% (6 weeks) Baseline 22.9 ± 0.8 75.9 ± 1.5 28.4 ± 0.4 37.4 ± 0.6 27.2 ± 0.8

Weight Loss 72.1 ± 1.4* 26.9 ± 0.4* 35.5 ± 0.6* 29.1 ± 0.8
[14] 46 Lean, active controls 23.3 ± 1.0 60.2 ± 1.6 21.6 ± 0.5 21.5 ± 0.7 47.2 ± 13.5 (n=6)

Data are means ± SEM. NA, not assessed. BMI, body mass index. *, significantly different from Baseline mean within each study, p<0.05

Table1: Anthropometric characteristics of sedentary, overweight or obese women before and after weight loss compared with active, lean controls.

Data are means ± SEM. NA, not assessed. HOMA2-IR, -%B, and -%S homeostasis model assessment of insulin resistance, β-cell function, and insulin sensitivity 
respectively. *,significantly different from Baseline mean within each study; †, significantly different from lean, active controls, P<0.05.

Table2: Plasma glucose, insulin, and homeostasis model estimates of insulin resistance, β-cell function, and insulin sensitivity in sedentary, overweight or obese women 
before and after weight loss compared with active, lean controls.

Study N Timepoint Glucose (mg/dL) Insulin (pmoL/L) HOMA2-IR HOMA2-%B HOMA2-%S
[8] 24 Baseline 100 ± 3† 88 ± 9† 1.68 ± 0.18† 110 ± 11 80 ± 27†

Weight Loss 92 ± 2*† NA NA NA NA
[15] 17 Baseline 93 ± 4† 88 ± 11† 1.65 ± 0.21† 125 ± 13 79 ± 32†

Weight Loss 81 ± 3* 82 ± 13*† 1.47 ± 0.20† 158 ± 19* 97 ± 30
[8] 36 Baseline 97 ± 3† 65 ± 9† 1.28 ± 0.23† 86 ± 11 143 ± 27†

Weight Loss 87 ± 2*† 61 ± 11*† 1.11 ± 0.20† 115 ± 17 192 ± 26*
[14] 46 Lean, active controls 82 ± 2 46 ± 7 0.84 ± 0.13 107 ± 8 201 ± 19
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CTX was not (r=0.10, p=0.26). By contrast, serum BAP concentrations 
were not altered by weight reduction (Table 3). 

At baseline, serum OC concentrations were positively correlated 
with HOMA2-%S (r=0.23, p=0.015) and negatively associated with 
HOMA2-IR (r=-0.27, p=0.005). Following weight loss, serum OC was 
negatively associated with fasting glucose (r= -0.232, p=0.02). Weight-
loss-associated changes in serum OC were positively correlated 
with changes in HOMA2-%B (r=0.33, p=0.04). There were no other 
significant relationships between the bone turnover markers and 
measures of glucose homeostasis (data not shown). 

Discussion
We and others have previously noted that OC increases following 

weight loss in overweight or obese, sedentary individuals [7-9,18]. 
In this secondary analysis of data collected from three independent 
weight-loss interventions [8,9,15], we explored the possibility that the 
weight-loss-associated increase in OC is related to its potential function 
as a regulator of glucose homeostasis, rather than its role as a marker of 
bone formation. We observed that the serum bone formation markers 
OC and BAP were reduced in overweight or obese women compared 
with lean, active controls, which is consistent with previous reports of 
reduced bone formation in association with excess adiposity [19]. 

However, following weight loss with concurrent reductions in 
plasma glucose and insulin, only OC increased while BAP remained 
unchanged. Under conditions of elevated bone formation, such as that 
induced by pharmacologic treatment [20] or fracture [21], both OC and 
BAP increase. In addition, after weight reduction, there was an inverse 
relationship between serum OC and fasting glucose concentration, 
and weight-loss-associated increases in OC were associated with 
improved β-cell function estimated using HOMA2. Thus, the post-
weight-reduction increase in OC, with no change in BAP, might be 
related not to bone formation, but to the role of OC as a regulator of 
glucose homeostasis. Although not confirmatory, these observations 
are consistent with previously reported cross-sectional associations 
between OC and measures of insulin sensitivity in humans [18,22-26]. 

Data from transgenic rodent models indicate that OC regulates 
glucose homeostasis by both increasing pancreatic secretion of insulin 
and sensitizing target tissues to insulin action [4,13]. Although one 
might expect that changes in OC would be correlated with changes 
in insulin sensitivity, we and others have reported no relationship 
between changes in OC and fasting glucose and insulin after weight 
loss [8,18]. However, fasting glucose and insulin do not reflect the 
capacity of the pancreas to secrete insulin or the sensitivity of muscle 
to insulin, but rather are measures of hepatic insulin sensitivity [27]. 
Thus, future studies that assess insulin secretion and sensitivity in 
response to a glucose load are likely required to accurately evaluate the 
effects of OC on its target tissues. Moreover, the very recent discovery 
that human adipose tissue secretes OC ex vivo [28], suggests that future 

studies should consider the source of OC that acts on target tissues to 
enhance insulin sensitivity.

In addition to an increase in OC, CTX also consistently increased 
following weight loss (Table 3). This observation and the lack of change 
in BAP are consistent with the hypothesis that bone mass and strength 
are governed by a mechanostat [29]. Based on this paradigm, the 
reduction in mechanical loading on the skeleton following weight loss 
causes a loss of bone mass that is mediated by a greater increase in 
bone resorption relative to formation. Additional studies, as described 
above, are required to determine if the increase in OC following weight 
loss reflects a change in bone formation or a glucoregulatory response 
or both.

A limitation of the present study is that we measured total OC, i.e., 
the sum or carboxylated and uncarboxylated OC. Although in mice 
it appears that only the uncarboxylated form of OC regulates energy 
metabolism [4,13], in humans, the roles of the two forms of OC remain 
unclear [26]. Reported that both total OC and carboxylated OC were 
associated with fasting glucose and insulin resistance. A recent study 
in middle-aged men reported that both forms of OC were associated 
with glucose tolerance, while uncarboxylated OC was related to β-cell 
function (HOMA-B%) and carboxylated OC was related to insulin 
sensitivity (HOMA-IR) [23], while Foresta et al reported an inverse 
association between the uncarboxylated-to-carboxylated OC ratio 
and BMI in men [28]. Thus, it is possible that we might have observed 
significant relationships between changes in measures of insulin 
sensitivity and OC had we differentiated between carboxylated and 
uncarboxylated OC. 

Strengths of the present study include a relatively large sample size 
and replication of the increase in OC concurrent with improvements 
in fasting glucose, insulin and HOMA-IR in three independent weight-
loss studies. Another strength of the present investigation is use of an 
anti-OC antibody that recognizes only intact OC, which allowed us to 
measure OC recently secreted from osteoblasts and not OC fragments 
released during bone resorption. Thus, although there was an apparent 
increase in bone resorption following weight loss based on the increase 
in serum CTX (Table 3), the observed increase in OC was not due to 
resorptive fragments.

In summary, the results of this preliminary investigation suggest 
that OC might play a role in the improvements in insulin sensitivity 
observed following weight reduction in overweight, sedentary 
individuals. Future studies are needed to substantiate this potential link 

between bone metabolism and insulin resistance in humans.
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