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DESCRIPTION
CD8+ effector T (TE) cells play a critical role in immunity against 
infections [1]. After an infection, 90%-95% of 
IL-7RlowCD62LlowKLRG1high Short-Lived Effector Cells 
(SLECs) undergo cell death in T cell contraction, and the 
remaining 5%-10% of IL-7RhighCD62LhighKLRG1low memory 
precursor effector cells (MPECs) differentiates into long-lived 
memory T (TM) cells that mediate immunity against infection via 
recall responses [1]. Since the ultimate goal of vaccine 
development is to generate a larger pool of TM cells, 
understanding the molecular mechanism that governs T cell 
memory is of great importance to vaccine or immunotherapy 
design.

CD8+ TM cells are characterized by two major traits; (a) 
expression of memory markers IL-7R and CD62L for phenotype 
differentiation and (b) Fatty Acid Oxidation (FAO) metabolism 
for generating cell energy, which ensure TM cells with long-term 
survival and functional recall responses [2]. These two 
characteristics are controlled by transcriptional FOXO1 
(forkhead O transcription factor-1) and metabolic AMP-activated 
protein kinase pathways (AMPK) [3]. The well-known 
“progressive linear differentiation” (LCD) model was originally 
proposed by Sallust in 2000, and later referred to as the distinct 
strengths of stimuli (antigen (Ag)/cytokine (CK) dose/duration, 
etc)] model for T cell memory [4-7]. For example, high affinity Ag 
or T cell receptor (TCR) and high IL-2 with long duration favor 
TE cell stimulation, whereas low affinity of Ag or TCR and low-
dose IL-2 prefer T cell memory formation [6,7]. However, the 
underlying molecular mechanism controlling T cell memory in 
the “LCD-TM” model remains unknown.

The mammalian Target of Rapamycin Complex-1 (mTORC1) is 
a well-known molecular sensor of (to) environmental signals 
(immune stimuli (three signals: antigen, co-stimulation, and 
cytokines), insulin, and growth factors) and plays an important 
role in T cell growth, proliferation, metabolism, and 
differentiation [8]. In CK-stimulated Phosphatidyllikositol-3-Kinase

(PI3K)-AKT-mTORC1 axis, PI3K activates AKT that 
subsequently activates mTORC1’s Raptor [7]. In 2009, Ahmed’s 
group provided the first evidence that inhibition of mTORC1 by 
Rapamycin (Rapa) treatment promotes CD8+ TM cells [9]. This 
finding was further supported by TM cell formation by either 
shRNA-targeted Raptor silencing or Rapa treatment or depletion 
of the mTORC1 suppressor Tuberous Sclerosis Complex-2 
(TSC2) [10-12]. However, the underlying pathway controlling 
TM cells in the “Rapa inhibition of mTORC1” (“Rapa-TM”) 
model is largely unknown.

It has long been known that three common γ-chain (γc)-family 
CKs IL-2, IL-7, and IL-15 triggering the same PI3K-pAKT-
mTORC1 via the same signaling γc [13] distinctly induce short-
lived SLECs and long-term MPECs [14,15]. To elucidate the 
underlying mechanism controlling T cell memory in the “γc-TM” 
model, we developed IL-2-stimulated TE (IL-2/TE) and IL-7-
stimulated TM (IL-7/TM) cells for characterization [16]. We 
found that, post CK binding, IL-2 and IL-7 stimulate distinct 
strengths of mTORC1 signaling via persistent expression of the 
IL-2 receptor (IL-2R), leading to IL-2-stimualed strong strength of 
mTORC1 (IL-2/mTORC1Strong), and transient expression of 
IL-7R (due to IL-7R internalization), leading to IL-7-stimulated 
weak strength of mTORC1 (IL-7/mTORC1Weak)[16]. This 
distinction further leads to forming IL-2/mTORC1Strong-
induced TE (IL-2-TE) and IL-7/mTORC1Weak-induced TM 
(IL-7-TM) cells for our “IL-7-TM” model [16]. This conclusion is 
supported by some previous evidence that IL-7-activated T cells 
with constitutive IL-7R differentiated into TE cells rather than 
TM cells [17,18], while IL-2-stimulated T cells with low 
expression of IL-2R instead of being TE cells became TM cells 
[19]. By using state-of-the-art genetic tools, we further 
demonstrated our in vivo evidence that chicken ovalbumin 
(OVA)-specific CD8+ T cells with IL-7R-/-derived from 
engineered OVA-specific TCR transgenic OTI/IL-7R knockout 
(KO) (OTI/IL-7RKO) mice failed in differentiation into TM cells 
post OVA-specific recombinant Listeria monocytogenes 
rLmOVA infection even though having comparable proliferation
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AMPKα1 pathway is also indispensable for T cell memory. 
Interestingly, we also found down-regulation of TSC2 and up-
regulation of mTORC1 and HIF-1α in IL-7/T (AMPKα1-/-) cells. 
Therefore, the metabolic switch from FAO to glycolysis in IL-7/T 
(AMPKα1-/-) cells may be derived from AMPKα1 deficiency-
induced loss of TSC2 (an mTORC1 inhibitor), leading to 
activation of mTORC1 and mTORC1-controlled the 
transcription factor HIF-1α regulating glycolysis metabolism [21].

To confirm our finding derived from our “IL-7/TM” model, we 
similarly developed our “IL-15/TM” model for characterization. 
Interestingly, we observed that IL-15 stimulates transient 
expression of IL-15R on T cells due to IL-15R internalization 
post CK binding, leading to IL-15-stimulated IL-15/mTORC1 
weak signal-induced IL-15/TM cells [22]. We further 
demonstrated that IL-15/mTORC1 Weak signal regulates TM 
cell formation via transcriptional FOXO1 and metabolic AMPK 
pathways, confirming our above finding in the “IL-7/TM” 
model (Figure 1) [22]. Lastly, to explore the underlying 
mechanism of the “Rapa-TM” model, we developed our “IL-2/
Rapa-TM” model through Rapa treatment to down-regulate 
mTORC1 [23] for characterization. We found that Rapa-treated 
mTORC1 weak (IL-2 (Rapa)/mTORC1 Weak) signaling induces 
TM cell formation via activation of FOXO1 and AMPK 
pathways [23,24].

CONCLUSION
Altogether, our data elucidate the molecular mechanism that 
distinct strengths of mTORC1 signaling control TE and TM cell 
differentiation, respectively, via activation of transcriptional T-bet 
and metabolic HIF-1α pathways and activation of transcriptional 
FOXO1-TCF1-Eomes and metabolic AMPK-ULK1-TAG7 
pathways. In summary, our new finding not only provides the 
molecular basis of TM cell formation for both “γc-TM” and 
“LCD-TM” models, but also has great impact on the 
development of efficient immunotherapies and vaccines for 
cancer and infectious diseases.
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activity compared to CD8+ T cells derived from wild-type OTI 
mice [16]. We also performed in vitro and in vivo experiments 
using IL-2/TE and IL-7/TM cells for systematic analysis by 
Western blotting, multi-colour flow cytometry, confocal and 
electron microscopy, adoptive T cell transfer, and Seahorse assays 
[16]. We, for the first time, demonstrated that IL-7/
mTORC1Weak signal promotes TM cells via coupled 
transcriptional FOXO1-TCF1 (T cell factor-1)-Eomes (for TM 
cell phenotypic formation) and metabolic AMPK-ULK1 (Unc-51-
like autophagy-activating kinase)-ATG7 (autophagy-related 
gene-7) for FAO-provided cell energy pathways, whereas IL-2/
mTORC1Strong signal induces TE cells via activation of 
transcriptional T-bet (for TE cell phenotypic and functional 
differentiation) and metabolic hypoxia-inducible factor-1α 
(HIF-1α for glycolysis-generated cell energy) pathways (Figure 1) 
[16].

Given that the transcription factor FOXO1 is indispensable in 
Rictor KO-induced T cell memory [19,20], it is also important to 
investigate the critical role of e metabolic regulator AMPKα1 in 
IL-7-stimulated T cell memory. Therefore, we repeated above 
experiments by using genetically engineered IL-7-stimulated 
OVA-specific CD8+ T cells derived from OVA-specific OTI/
AMPKα1KO mice. We demonstrated that AMPKα1 deficiency 
abolishes the metabolic AMPKα1 pathway and mitochondrial 
biogenesis, triggers a metabolic switch from FAO to glycolysis 
and halts its long-term survival and recall responses upon 
secondary challenge of rLmOVA, even though the 
transcriptional FOXO1 pathway and TM cell phenotype 
maintained in IL-7/T(AMPKα-/-) cells derived from OTI/
AMPKα1KO mice [16]. Our data thus indicate that the metabolic
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Figure 1: Schematic diagram of distinct strengths of mTORC1 
signaling controlling T cell differentiation. Note: (     ) IL-2 
stimulates strong strength signaling of mTORC1 (mTORC1 Strong), 
leading to effector T cell differentiation via activation of 
transcriptional T-bet and metabolic HIF-1α pathways; (    ) In 
contrast, IL-7, IL-15, and IL-2+rapamycin [IL-2(Rapa)] stimulate weak 
strength signaling of mTORC1 (mTORC1 Weak), leading to 
memory T cell formation via activation of transcriptional FOXO1-
TCF1-Eomes and metabolic AMPK-ULK1-ATG7 pathways.
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