

Open Access

Volumetric, Viscometric, Acoustic and IR Spectroscopic Studies of Binary Mixtures of Tert-butyl Acetate with Isopropylbenzene, Isobutylbenzene and Methoxybenzene at T=298.15 and 308.15 K

Rajashri B Sawant*

Department of Chemistry, SPH Mahila College, Malegaon Campus, Maharashtra, India

Abstract

Densities, viscosities, speed of sound and IR spectroscopy of binary mixtures of tert-butyl acetate (tBA) with isopropylbenzene, isobutylbenzene, methoxybenzene have been measured over the entire range of composition, at (298.15 and 308.15) K and at atmospheric pressure. From the experimental values of density, viscosity, speed of sound and IR spectroscopy the excess molar volumes (V^{E}), deviations in viscosity ($\Delta \eta$) and deviation in isentropic compressibility (Δk_s) and stretching frequency () have been calculated. The excess molar volumes and deviations in isentropic compressibility with tBA are positive for the mixtures of isobutylbenzene and methoxybenzene with tBA and, negative for isopropylbenzene with tBA while deviations in viscosities are negative for the binary mixtures of isobutylbenzene, methoxybenzene and positive for isopropylbenzene. The excess molar volumes, deviations in viscosity and, deviations in isentropic compressibility have been fitted to the Redlich-Kister polynomial equation.

Keywords: Benzene; Deviations in viscosity; Deviations in isentropic compressibility; Excess molar volumes; IR; Tert-butyl acetate

Introduction

Studies on thermodynamic and transport properties of binary liquid mixtures provide information on the nature of interactions in the constituent binaries. Literature provides extensive data on the density and viscosity of liquid mixtures but a combined study of density, viscosity, speed of sound and IR study is quite scarce. In continuation of our earliest studies [1-5] with binary mixtures of esters with normal and branched alcohols, we now report the density, viscosity, speed of sound and spectroscopic studies of tert-butyl acetate (tBA) with isopropylbenzene, isobutylbenzene and methoxybenzene at 298.15 and 308.15K. The effect of chain length and chain branching of alkyl on the solute- solvent interactions were reported earlier [6]. The excess molar volumes were explained on the basis of strong dipole-induced dipole interaction between π - electron cloud of aromatic ring and carbonyl group of tBA. The excess molar volume depends with temperature. The interaction between esters and hydrocarbons were studied [7] for binary mixtures of butyl acetate with aromatic hydrocarbons. The electron withdrawing groups increases IR absorption frequency while electron donating groups lowers IR absorption frequency. In present paper we have studied the physico-chemical properties of the mixtures indicated above, in order to explain the strength and nature of the interactions between the components by deriving various thermodynamic parameters from volumetric, viscometric, acoustic properties of binary mixtures and spectroscopic study.

Experimental Procedure

Isopropylbenzene (Cumene) (Fluka, purity >99%), isobutylbenzene (SD Fine Chem., purity >99%), methoxybenzene (Anisole) (Sisco Research Lab Pvt Ltd., purity >99.5%), and tert-butyl acetate (tBA) (Spectrochem Pvt. Ltd, purity >99%) were used after single distillation. The purity of the solvents, after purification, was ascertained by comparing their densities, viscosities and speed of sound with the corresponding literature values at 298.15 K and 308.15 K (Table 1). Binary mixtures were prepared by mass in air tight stoppered glass bottles. The masses were recorded on an Adairdutt balance to an accuracy of $\pm 1 \times 10^{-4}$ g. Care was taken to avoid evaporation and

contamination during mixing. The estimated uncertainty in mole fraction was ${<}1\times 10^{-4}.$

Densities were determined by using a 15 cm³ bicapillary pycnometer as described earlier [8-10]. The pycnometer was calibrated using conductivity water with 0.99705 g.cm⁻³ as its density [11] at 298.15 K. The pycnometer filled with air bubble free experimental liquids was kept in a transparent walled water bath (maintained constant to \pm 0.01 K) for (10 to 15) min to attain thermal equilibrium. The positions of the liquid levels in the two arms were recorded with the help of a traveling microscope, which could read to 0.01 mm. The estimated uncertainty of density measurements of solvent and binary mixtures was 0.0001 g.cm⁻³. At least three to four measurements were made which had an average deviation of \pm 0.0001 g.cm⁻³.

The dynamic viscosities were measured using an Ubbelohde suspended level viscometer [9], calibrated with conductivity water. An electronic digital stop watch with readability of \pm 0.01 s was used for the flow time measurements. At least three repetitions of each data reproducible to \pm 0.05 s were obtained, and the results were averaged. The uncertainties in dynamic viscosities are of the order s 0.003 mPa.s. The speed of sound (u) were measured at a frequency of 2 MHz in these solutions through interferometric method (using Mittal's F-81 model) at (298.15 and 308.15) K (\pm 0.05 K). The uncertainty in speed measurements is estimated to be \pm 0.1%. The other experimental details are the same as reported earlier [4,12]. FTIR spectra of the above were recorded on FTIR spectrometer model Shimadzu 8400S PC.

*Corresponding author: Rajashri B Sawant, Department of Chemistry, SPH Mahila College, Malegaon Campus, Maharashtra-423 105, India, Tel: +919890856562; E-mail: rajashriahire@gmail.com

Received August 20, 2016; Accepted August 24, 2016; Published August 30, 2016

Citation: Sawant RB (2016) Volumetric, Viscometric, Acoustic and IR Spectroscopic Studies of Binary Mixtures of Tert-butyl Acetate with Isopropylbenzene, Isobutylbenzene and Methoxybenzene at T=298.15 and 308.15 K. J Phys Chem Biophys 6: 225. doi:10.4172/2161-0398.1000225

Copyright: © 2016 Sawant RB. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Page 2 of 7

	Tempt	ρ × 10 ⁻³ (kg.m ⁻³)		η (mPa.s)		u (m.s ⁻¹)	
Liquid	К	Expt	Lit	Expt.	Lit	Expt.	Lit.
test had a setate	298.15	0.8611	0.86057 ª	0.683	-	1092	1092.76 ^t
tert-butyl acetate	308.15	0.8494	0.84938 ª	0.596	-	1055	1049.71 ^b
isopropylbenzene	298.15	0.8570	0.85752 ° 0.8571 ₫	0.735	0.739 ^d 0.731 ^c	1330	1338 ^d
	308.15	0.8485	0.84924 ° 0.84915 ^f	0.656	0.636 ^c	1280	1266.5° 1264 ^k
	298.15	0.8488	0.84891 ^f	0.979	-	1296	1296.7 °
isobutylbenzene	308.15	0.8404	0.84082 ^f	0.844	0.848 ^k	1260	1257.5 ° 1252 ^k
methoxybenzene	298.15	0.9892	0.9893 ¹ 0.9889 ^g 0.98932 ^h 0.98915 ^j	1.017	1.0023 ^g 1.017 ^j 0.991 ⁱ	1404	1410 º 1408.02 ·
	308.15	0.9791	0.9788 ¹ 0.9796 ^h	0.890	0.8896 ^g	1376	-

^aRef. [6]; ^bRef. [19]; ^cRef. [20]; ^aRef. [21]; ^cRef. [22]; ⁱRef. [7]; ^aRef. [23]; ^bRef. [24]; ⁱRef. [25]; ⁱRef. [26]; ⁱRef. [27]; ⁱRef. [28].

Table 1: Comparison of experimental density, viscosity and speed of sound pure liquids with literature values at 298.15 and 308.15K.

Results and Discussion

Experimental values of densities ρ , viscosities η and speed of sound u of mixtures at (298.15 and 308.15) K are listed as a function of mole fraction in Table 2. The density values have been used to calculate excess molar volumes V^{E} using the following equation

$$V^{E} / cm^{3} \cdot mol^{-1} = \left(\frac{X_{1}M_{1} + X_{2}M_{2}}{\tilde{n}_{12}}\right) - \left(\frac{X_{1}M_{1}}{\tilde{n}_{1}}\right) - \left(\frac{X_{2}M_{2}}{\tilde{n}_{2}}\right) \quad (1)$$

where ρ_{12} is the density of the mixture and x_1, M_1, ρ_1 , and x_2, M_2, ρ_2 are the mole fraction, the molecular weight, and the density of pure components 1 and 2, respectively.

The viscosity deviations $\Delta \eta$ were calculated using

$$\Delta \eta / \text{mPa.s} = \eta_{\mathfrak{P}} - X_1 \eta_1 - X_2 \eta_2 \tag{2}$$

where η_{12} is the viscosity of the mixture and x_1 , x_2 and η_1 , η_2 are the mole fraction and the viscosity of pure components 1 and 2, respectively.

The speed of sound u was used to calculate the isentropic compressibility κ_c by the equation

$$\mathcal{K}_{\rm S} = \frac{1}{\mu^2 \times \rho} \tag{3}$$

The deviation from isentropic compressibility, ($\Delta \kappa s$), was obtained using the relation,

$$\Delta \kappa_{\rm S} = \kappa_{\rm S} \, \boldsymbol{\imath} - X_1 \, \boldsymbol{\kappa}_{\rm S1} - X_2 \, \boldsymbol{\kappa}_{\rm S2} \tag{4}$$

where κ_{s12} is the experimental isentropic compressibility of the mixture, x_1 , x_2 and κ_{s1} , κ_{s2} are the mole fraction and isentropic compressibility of pure components.

The excess molar volumes and deviations in viscosity and isentropic compressibility were fitted to Redlich Kister [13] equation of the type

$$Y = X_1 X_2 \sum_{i=0}^{n} a_i (x_1 - x_2)^i$$
(5)

Where Y is either V^{E} , or $\Delta \eta$, or $\Delta \kappa_{a}$, and n is the degree of polynomial. Coefficients a_{i} were obtained by fitting eq 5 to experimental results using a least-squares regression method. In each case, the optimum number of coefficients is ascertained from an examination of the variation in standard deviation σ .

 σ was calculated using the relation

$$\sigma(Y) = \left[\frac{\sum (Y_{expt} - Y_{calc})^2}{N - n}\right]^{1/2}$$
(6)

where N is the number of data points and n is the number of coefficients. The calculated values of the coefficients a along with the standard deviations σ are given in Table 3. The variation of V^{E} with the mole fraction x_1 of tBA for isopropylbenzene, isobutylbenzene and methoxybenzene is represented in Figure 1 at 298.15K. The values of $V^{\rm E}$ are positive for the binary mixtures of tBA with isobutylbenzene and methoxybenzene while these are negative for the binary mixtures of tBA with isopropylbenzene. If the interaction between molecules of two mixed components is weaker than in the pure component, the excess volume will be positive. This usually occurs when one component has polar groups and the other a non-polar or weakly polar behaviour. tBA is weakly polar and aromatic hydrocarbons are nearly non-polar. When the pure compounds are mixed, the non-polar hydrocarbon molecules intersperse among the tBA molecules resulting in a decreased interaction among the dipoles of the acetate and the destructions of dispersive interactions among benzenic rings. The new interaction among unalike molecules is less strong and produces expansion [7].

Figure 2 depicts the variation of $\Delta \eta$ with the mole fraction x_1 of tBA. The $\Delta \eta$ values are positive for isopropylbenzene and negative for isobutylbenzene and methoxybenzene systems. The methoxybenzene is more negative than isobutylbenzene.

The viscosities of binary mixtures are fitted to Grunberg and Nissan [14] viscosity model.

$$\mathbf{h} \ \eta = \mathbf{X}_1 \mathbf{h} \ \eta_1 + \mathbf{X}_2 \mathbf{h} \ \eta_2 + \mathbf{X}_1 \mathbf{X}_2 \mathbf{G}_{12} \tag{7}$$

where G_{12} is an interaction parameter which is a function of the components 1 and 2 as well as temperature. Table 4 includes the different parameters for Grunberg - Nissan, Hind et al., Heric - Brewer and percentage standard deviations.

Hind et al. [15] suggested an equation for the viscosity of binary liquid mixtures as

Page 3 of 7

x ₁	ρ × 10 ⁻³ (kg. m ⁻³)	<i>V</i> ^E × 10 ⁶ (m³.mol⁻¹)	η (mPa.s)	∆η (mPa.s)	u (m.s ⁻¹)	к _s (ТРа ⁻¹)	∆κ _s (TPa⁻¹)
	1	t	BA (1)+isopropylbenz	ene (2) at 298.15K			
0.0000	0.8570	0.000	0.735	0.000	1330	660	0
0.0991	0.8574	-0.001	0.732	0.002	1302	688	-3
0.1972	0.8578	-0.003	0.729	0.004	1276	716	-6
0.2970	0.8583	-0.019	0.724	0.004	1250	746	-7
0.3962	0.8587	-0.018	0.719	0.005	1225	776	-8
0.4965	0.8591	-0.017	0.713	0.004	1201	807	-9
0.5963	0.8596	-0.031	0.707	0.003	1177	840	-7
0.6973	0.8600	-0.028	0.701	0.002	1154	873	-6
0.7976	0.8604	-0.025	0.695	0.001	1132	907	-3
0.8992	0.8608	-0.020	0.689	0.001	1111	941	-1
1.0000	0.8611	0.000	0.683	0.000	1092	974	0
		t	BA (1)+isopropylbenz	ene (2) at 308.15K			
0.0000	0.8485	0.000	0.656	0.000	1280	719	0
0.0991	0.8486	-0.002	0.652	0.002	1254	749	-4
0.1972	0.8487	-0.005	0.647	0.003	1230	779	-7
0.2970	0.8488	-0.006	0.642	0.004	1205	811	-9
0.3962	0.8489	-0.008	0.636	0.004	1181	845	-8
0.4965	0.8491	-0.026	0.629	0.003	1157	880	-/
0.5963	0.8492	-0.028	0.623	0.003	1135	914	-/
0.6973	0.8493	-0.029	0.616	0.002	1114	949	-6
0.7976	0.8493	-0.014	0.609	0.001	1093	986	-3
0.8992	0.8494	-0.015	0.602	0.000	1074	1021	-3
1.0000	0.8494	0.000	0.596	0.000	1055	1058	0
x ₁	ρ × 10 ⁻³ (kg. m ⁻³)	<i>V</i> ^E × 10 ⁶ (m³.mol⁻¹)	η (mPa.s)	∆η (mPa.s)	u (m.s ^{.1})	к _s (ТРа¹)	∆κ _s (TPa⁻¹)
		ł	BA (1)+isobutylbenze	ne (2) at 298.15K			
0.0000	0.8488	0.000	0.979	0.000	1296	701	0
0.0980	0.8496	0.045	0.948	-0.002	1273	726	-2
0.1980	0.8501	0.152	0.916	-0.004	1250	753	-2
0.2973	0.8506	0.260	0.883	-0.008	1228	780	-2
0.3981	0.8511	0.374	0.850	-0.011	1207	807	-3
0.4980	0.8517	0.471	0.818	-0.014	1186	835	-2
0.5972	0.8526	0.519	0.787	-0.015	1167	861	-3
0.6974	0.8539	0.507	0.758	-0.015	1148	889	-2
0.7983	0.8556	0.439	0.730	-0.013	1129	917	-2
0.8980	0.8579	0.281	0.705	-0.008	1110	946	0
1.0000	0.8611	0.000	0.683	0.000	1092	974	0
	0.0404		BA (1)+isobutylbenze	ne (2) at 308.15K	(000		•
0.0000	0.8404	0.000	0.844	0.000	1260	750	0
0.0980	0.8410	0.031	0.819	-0.001	1237	///	-3
0.1980	0.8414	0.105	0.792	-0.003	1214	806	-5
0.29/3	0.0417	0.199	0.705	-0.005	1192	836 866	-b -7
0.3901	U.04∠I	0.210	0.737	-0.000	11/1	000	-/
0.4900	0.0420	0.000	0.710	-0.010	1101	090	-/
0.5972	0.0431	0.404	0.004	-0.012	1111	921	-/
0.0374	0.0440	0.404	0.000	-0.071	1002	900	
0.7300	0.8470	0.040	0.615	-0.010	1032	1024	+
1,0000	0.8494	0.221	0.596	-0.000	1074	1024	-5
1.0000	ρ × 10 ⁻³	<i>V</i> ^E × 10 ⁶	n.590	Δ n	u		
X ₁	(kg. m ⁻³)	(m³.mol-1)	(mPa.s)	(mPa.s)	(m.s ⁻¹)	к _s (ТРа ⁻ ')	∆ĸ _s (1Pa⁻¹)
		t	BA (1)+methoxybenze	ene (2) at 298.15K			
0.0000	0.9892	0.000	1.017	0.000	1404	513	0
0.0974	0.9736	0.063	0.966	-0.018	1339	573	15
0.1983	0.9581	0.137	0.921	-0.030	1284	633	29

0.2988	0.9433	0.218	0.883	-0.034	1240	689	38
0.3987	0.9293	0.290	0.850	-0.034	1203	744	47
0.4982	0.9161	0.342	0.820	-0.031	1173	793	50
0.5990	0.9034	0.380	0.792	-0.025	1149	838	49
0.6992	0.8916	0.373	0.766	-0.017	1128	881	46
0.7984	0.8807	0.318	0.739	-0.011	1113	917	36
0.8975	0.8707	0.190	0.713	-0.004	1100	949	22
1.0000	0.8611	0.000	0.683	0.000	1092	974	0
tBA (1)+methoxybenzene (2) at 308.15K							
0.0000	0.9791	0.000	0.890	0.000	1376	539	0
0.0974	0.9635	0.037	0.847	-0.014	1309	606	16
0.1983	0.9479	0.096	0.810	-0.022	1255	670	28
0.2988	0.9331	0.153	0.776	-0.026	1211	731	37
0.3987	0.9191	0.201	0.747	-0.026	1174	789	43
0.4982	0.9058	0.243	0.720	-0.024	1144	844	46
0.5990	0.8930	0.271	0.695	-0.019	1119	894	44
0.6992	0.8811	0.255	0.671	-0.013	1098	941	39
0.7984	0.8699	0.222	0.647	-0.008	1081	984	31
0.8975	0.8594	0.149	0.623	-0.003	1067	1022	17
1.0000	0.8494	0.000	0.596	0.000	1055	1058	0

Table 2: Density (ρ), viscosity (η), excess molar volume (V^{ϵ}), deviation in viscosity ($\Delta \eta$), speed of Sound (u), isentropic compressibility (κ_s) and deviation in isentropic compressibility ($\Delta \kappa_s$).

Standard deviations	T/K	a	a ₁	a ₂	a ₃	a ₄	σ
			tBA (1)+isopropylbe	enzene (2)			
$VE/(cm^3 mol^{-1})$	298.15	-0.0931	-0.1154	-0.0287			0.0042
V-7(CITIIIOF)	308.15	-0.0804	-0.0866	-0.0028			0.005
4 n //mDa a)	298.15	0.0162	-0.0197	-0.0082	0.0187	0.0145	0.0004
$\Delta \eta /(\Pi Pa.s)$	308.15	0.0141	-0.0127	-0.0043			0.0003
	298.15	-33.5391	13.6785	17.0287	0	0	0.4448
ΔK _s /(TPa ⁺)	308.15	-30.4397	13.0323	-11.732	0	0	0.707
			tBA (1)+isobutylbe	nzene (2)			
VE//	298.15	1.8709	1.3876	-0.1099	0.3165		0.0052
V ² /(CM ³ .MOl ⁻⁺)	308.15	1.4375	1.2575	-0.0811			0.0039
	298.15	-0.0547	-0.0423	0.0005			0.0003
Δη /(mPa.s)	308.15	-0.089	-0.0818	0.0652			0.0186
	298.15	-10.59	-8.0089	-1.5468	33.0352		0.5755
$\Delta K_{s} / (1Pa^{-1})$	308.15	-28.7762	7.8474	16.3418	-10.7753	-37.0481	0.3528
			tBA (1)+methoxybe	enzene (2)			
VE//	298.15	1.3823	0.9712	0.2266	-0.1930	-0.3255	0.0032
V ² /(cm ³ .mol ²)	308.15	0.9717	0.5746	0.0767	0.2622		0.0053
	298.15	-0.123	0.1006	-0.0035			0.0005
Δη /(mPa.s)	308.15	-0.0935	0.0772	-0.0024			0.0004
4 //TD-1)	298.15	199.596	40.0968	8.6513	0	0	0.6392
∆K _s /(TPa⁻')	308.15	181.8703	6.8637	3.1048	0	0	0.5049

Table 3: Parameters and standard deviation σ of equations (5) and (6) for tBA + isopropylbenzene, + isobutylbenzene, + methoxybenzene at temp. 298.15 and 308.15 K.

Page 4 of 7

Page 5 of 7

System	T/K	G ₁₂	σ	H ₁₂	σ	Heric- Brewer α ₁₂ α ₂₁		σ
tBA (1) +	298.15	0.025	0.17	0.717	0.17	0.026	-0.017	0.08
isopropylbenzene (2)	308.15	0.024	0.10	0.631	0.08	0.024	-0.020	0.05
tBA (1) +	298.15	-0.003	0.44	0.804	0.41	0.021	-0.044	0.07
isobutylbenzene (2)	308.15	-0.056	2.33	0.681	2.25	-0.028	-0.120	2.06
tBA (1) +	298.15	-0.066	0.85	0.788	1.01	-0.032	0.107	0.08
methoxybenzene (2)	308.15	-0.045	0.48	0.695	0.67	-0.014	0.094	0.06

Table 4: Interaction parameters of Grunberg-Nissan, Hind et al., Heric-Brewer model and standard deviations σ at temp. 298.15 and 308.15 K.

X ₁	vC=O	vC-H	vC=C	vC-O					
tBA(x,)+isopropylbenzene (1-x,)									
0.0	-	2955(s) and many peaks within 2886 to 3023	1466 (m)	-					
0.4	1736 (s)	2963 (s) 3053 (shoulder)	1452 (m) 1373 (m)	1262 (s) 1169 (s)					
0.5	1734 (s)	2957 (s)	1468 (m) 1381 (m)	1263 (s) 1167 (s)					
0.6	1734 (s)	2963 (m)	1464 (m) 1373 (m)	1262 (s) 1169 (s)					
0.7	1732 (s)	2961 (m)	1470 (m) 1377 (m)	1263 (s) 1165 (s)					
0.8	1736 (s)	2974 (m) and many peaks within 2882 to 3065	1458 (m) 1368 (m)	1262 (s) 1171 (s)					
1.0	1732 (s)	2982 (m)	_	1262 (s) 1169 (s)					
		$tBA(x_1) + isobutylbenzene (1-x_1)$							
0.0	_	2957 (s) and many Shoulders 2878 to 3071	1458 (m) 1377 (m)	-					
0.4	1732 (s)	2947 (s) 3038 (shoulder)	1464 (m) 1373 (m)	1260 (s) 1169 (s)					
0.5	1732 (s)	2947 (s) 3042 (shoulder)	1462 (m) 1375 (m)	1260 (s) 1165 (s)					
0.6	1736 (s)	2967 (m) and many Shoulders 2876 to 3065	1460 (m) 1370 (s)	1260 (s) 1169 (s)					
0.7	1732 (s)	2955 (s) 2920(shoulder) 2874(shoulder)	1460 (m) 1377 (m)	1263 (s) 1171 (s)					
1.0	1732 (s)	2982 (m)	-	1262 (s) 1169 (s)					

x ₁	vC=O	vC-H	vC=C	vC-O				
$tBA(x_1)$ +methoxybenzene (1- x_1)								
0.0	-	2945 (m) 2837 (m) 3052 (m)	1483 (s) 1593 (s)	-				
0.4	1728 (s)	2967 (m)	1478 (s) 1591 (m)	1263 (s) 1169 (m) 1040 (m)				
0.5	1728 (s)	2969 (m)	1476 (m) 1593 (m)	1262 (s) 1169 (m) 1038 (m)				
0.6	1728 (s)	2971 (m)	1478 (m) 1594 (m)	1262 (s) 1169 (m) 1038 (m)				
0.7	1730 (s)	2980 (m) 2859 (shoulder) 3050 (shoulder)	1481 (m) 1595 (m)	1260 (s) 1169 (m) 1032 (m)				
0.8	1732 (s)	2980 (m)	1478 (m) 1601 (m)	1260 (s) 1169 (m) 1030 (m)				
1.0	1732 (s)	2982 (m)	-	1262 (s) 1169 (s) 1028 (m)				

 Table 5: FTIR stretching frequency (cm⁻¹) of tBA(x_1) and isopropylbenzene, isobutylbenzene, methoxybenzene (1- x_1).

$$\eta = \chi_1^2 \eta_1 + \chi_1^2 \eta_2 + 2\chi_1 \chi_2 H_{12}$$
(8)

where $\mathbf{H}_{_{12}}$ is an interaction parameter and is attribute to unlike pair interactions.

The two parameter Heric and Brewer [16] equation is of the form

 $\ln v = x_1 \ln v_1 + x_2 \ln v_2 + x_1 \ln M_1 + x_2 \ln M_2 - \ln [x_1 M_1 + x_2 M_2] + x_1 x_2 [a_2 + a_2 (x_1 - x_2)].$ (9)

where $M_{_1}$ and $M_{_2}$ are molecular weights of components 1 and 2 and $\alpha_{_{12}},\alpha_{_{21}}$ are interaction parameters.

The correlating ability of equations (7) to (9) was tested by calculating the percentage standard deviation (σ %) between the experimental and calculated viscosity as

$$\delta = \left[\frac{1}{\left(n-m\right)-\Sigma\left\{\left(100\left(i \quad \text{exptl} \quad \text{calcd} \quad \text{exptl} \right)^{2}\right\}^{1/2}}\right](10)$$

where n represents the number of experimental points and m represents the number of coefficients. From Table 4, it is seen that the values of G_{12} are positive for the binary mixtures of tBA with isopropylbenzene and negative for methoxybenzene. Also for isobutylbenzene G_{12} negative at 298.15K and positive at 308.15K. The values of H_{12} are positive for all the binary mixtures while α_{12} is positive for isopropylbenzene and isobutylbenzene and for methoxybenzene it is negative at 298.15K and positive at 308.15K. Also α_{21} is negative for isopropylbenzene and isobutylbenzene and positive for methoxybenzene.

The variation of $\Delta \kappa_s$ with mole fraction of tBA, x_1 , is represented in Figure 3. The values of $\Delta \kappa_s$ for mixtures of tBA with isobutylbenzene and methoxybenzene are positive and negative for isopropylbenzene. The trend is observation is methoxybenzene more positive than isobutylbenzene.

Kiyohara and Benson [17] have suggested that ΔKs is the resultant of several opposing effects. The positive values may be attributed to the size of these molecules that allow relative molecular interactions between acetate molecules [18]. The trend signify decreasing dipoledipole interactions due to decreasing proton donating abilities with increasing chain length of aromatic hydrocarbons. From Table 5, the vC=O of tBA+isopropylbenzene decreased slightly from x₁=0.4 onwards. Irregular trend in vC=C and alkyl vC-H is observed. There is no drastic change in vC-O stretching frequencies. From observation of vC=C of system it is concluded that the magnitude of interaction are more for tBA+isopropylbenzene.

The vC=O of TBA+Isobutylbenzene remains same within $x_1=0.4$ -0.7 except at $x_1=0.6$. Trend of vC-H was irregular with remarkable changes. vC=C increased from $x_1=0.0$ to 0.4 and decreased $x_1=0.5$ onwards. There are equal intense bands for vC-O in $x_1=0.4$ -0.6. Presence of extra CH₂ group in isobutylbenzene as compared to isopropyl benzene affects vC=C and vC-H. More changes in vC=C are observed in isobutylbenzene. The vC=O almost remain same for tBA+methoxybenzene from $x_1=0.4$ to 0.6 and then slightly increases. vC-H sharply increased from $x_1=0.4$ onwards. An irregular trend in vC=C is observed for this system. The aromatic vC-O decreased with increase in x_1 . This suggests dipole-induced dipole interaction between carbonyl of tBA and aryl C-O.

J Phys Chem Biophys, an open access journal

ISSN: 2161-0398

Figure 1: Excess molar volumes V^{ϵ} at 298.15 K for x₁ tBA + (1-x₁) benzenes: ■ isopropylbenzene; ▲ isobutylbenzene; •methoxybenzene.

Page 6 of 7

Conclusion

The excess molar volumes and deviations in isentropic compressibility with tBA are positive for the mixtures of isobutylbenzene and methoxybenzene with tBA and, negative for isopropylbenzene with tBA while deviations in viscosities are negative for the binary mixtures of isobutylbenzene, methoxybenzene and positive for isopropylbenzene. The excess molar volumes, deviations in viscosity and, deviations in isentropic compressibility have been fitted to the Redlich-Kister polynomial equation. In FTIR spectra, presence of extra CH₂ group in isobutylbenzene as compare to isopropylbenzene affects vC = C and vC-H. More changes in vC=C are observed in isobutylbenzene. The aromatic vC-O decreased with increase in x_1 . This suggests dipole-induced dipole interaction between carbonyl of tBA and aryl C-O.

Acknowledgements

Authors thanks to Mehadi Hasan, Former Head, PG Department of Chemistry, MSG Arts, Science and Commerce College, Malegaon Campus, Maharashtra, India for his kind co-operation.

References

- 1. Nikam PS, Mahale TR, Hasan M (1996) J Chem Eng Data 37: 92-96.
- Nikam PS, Mahale TR, Hasan M (1996) Density and Viscosity of Binary Mixtures of Ethyl Acetate with Methanol, Ethanol, Propan-1-ol, Propan-2-ol, Butan-1-ol, 2-Methylpropan-1-ol, and 2-Methylpropan-2-ol at (298.15, 303.15, and 308.15) K. J Chem Eng Data 41: 1055-1058.
- Nikam PS, Mahale TR, Hasan M (1998) Densities and Viscosities for Ethyl Acetate + Pentan-1-ol, + Hexan-1-ol, + 3,5,5-Trimethylhexan-1-ol, + Heptan-1ol, + Octan-1-ol, and + Decan-1-ol at (298.15, 303.15, and 308.15) K. J Chem Eng Data 43: 436-440.
- Nikam PS, Mahale TR, Hasan M (1998) Ultrasonic study of alkanols (C1–C4) in binary mixtures containing ethyl acetate as common component. Acustica Acta Acustica 84: 579-584.
- Hasan M, Hiray AP, Kadam UB, Shirude DF, Kurhe KJ, et al. (2010) Densities, Sound Speed, and IR Studies of (Methanol + 1-Acetoxybutane) and (Methanol + 1,1-Dimethylethyl Ester) at (298.15, 303.15, 308.15, and 313.15) K. J Chem Eng Data 43: 535-538.
- Sakurai M, Nakamura K, Nitta K (1996) Partial Molar Volumes of Alkyl Acetates in Water. J Chem Eng Data 41: 1171-1175.
- Resa JM, Gonzalez C, Concha RG, Iglesias M (2004) Influence of temperature on excess molar volumes for butyl acetate + aromatic hydrocarbons. Phy Chem Liq 42: 493-520.
- Nikam PS, Hasan M, Shewale RP, Sawant AB (2003) Limiting lonic Partial Molar Volumes of Cs+, Na+, (C4H9)4N+, Cl-, Br-, I-, BPh4- in Aqueous Acetone at 298.15 K. J Solut Chem 32: 987-995.
- Nikam PS, Shewale RP, Sawant AB, Hasan M (2005) Limiting Ionic Partial Molar Volumes and Viscosities of Cs+, Na+, (C4H9)4N+, Cl-, Br-, I,-, and BPh4- in Aqueous Acetone at 308.15 K. J Chem Eng Data 50: 487- 491.
- Nikam PS, Jagdale BS, Sawant AB, Hasan M (1999) Ultrasonic study of binary liquid mixtures of benzonitrile with alkanols (C1-C3) at various temperatures. Acoustic Lett 22: 199-203.
- Marsh KN (1987) Recommended Reference Materials for the Realisation of Physicochemico Properties, Blackwell Scientific Publication, Oxford, UK.

- Nikam PS, Jadhav MC, Hasan M (1997) Molecular Interactions in Mixtures of Dimethyl sulfoxide with Some Alkanols-an Ultrasonic Study. Acustica, Acta Acustica 83: 86-89.
- Redlich O, Kiste AT (1948) Algebraic representation of thermodynamic properties and the classification of solutions. Ind Eng Chem 40: 345-348.
- 14. Grunberg L, Nissan A (1949) Mixture Law for Viscosity. Nature 164: 799-800.
- Hind RK, McLaughlin E, Ubbelohde AR (1960) Structure and viscosity of liquids. Camphor+ pyrene mixtures. Trans Faraday Soc 56: 328-330.
- Heric EL, Brewer JG (1967) Viscosity of some binary liquid nonelectrolyte mixtures. J Chem Eng Data 12: 574-583.
- Kiyohara O, Benson GC (1979) Ultrasonic speeds and isentropic compressibilities of n-alkanol+ n-heptane mixtures at 298.15 K. J Chem Thermodyn 11: 861-863.
- Cubero E, Orozco M, Hobza P, Luque F (1999) Hydrogen Bond versus Anti-Hydrogen Bond: A Comparative Analysis Based on the Electron Density Topology. J Phys Chem 103: 6394-6401.
- Sakurai M, Nakamura K, Nitta K, Takenaka N, Mukae K (1998) Partial Molar Isentropic Compressions of Alkyl Acetates in Water. J Chem Eng Data 43: 249-254.
- 20. Rattan VK, Sethi BPS (1989) Indian J Techno 27: 157-160.
- Singh S, Sethi BPS, Katyal RC, Rattan VK (2005) Viscosities, Densities, and Speeds of Sound of Binary Mixtures of o-Xylene, m-Xylene, p-Xylene, and Isopropylbenzene with 2-Butanone at 298.15 K. J Chem Eng Data 50: 125-127.
- Resa JM, Gonzalez C, Concha RG, Iglesias M (2004) Ultrasonic velocity measurements for butyl acetate+hydrocarbon mixtures. Phys Chem Liq 42: 521-543.
- Joshi S, Aminabhavi TM, Shukla SS (1990) Densities and viscosities of binary liquid mixtures of anisole with methanol and benzene. J Chem Eng Data 35: 187-189.
- Joshi S, Aminabhavi TM, Shukla SS (1990) Densities and viscosities of binary liquid mixtures of anisole with methanol and benzene. J Chem Eng Data 35: 247-253.
- Nayak JN, Aralaguppi MI, Aminabhavi TM (2002) Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of Ethyl Chloroacetate with Aromatic Liquids at 298.15, 303.15, and 308.15 K. J Chem Eng Data 47: 964-969.
- 26. Al-Kandary JA, Al-Jimaz AS, Latif AHMA (2006) Viscosities, Densities, and Speeds of Sound of Binary Mixtures of Benzene, Toluene, o -Xylene, m -Xylene, p -Xylene, and Mesitylene with Anisole at (288.15, 293.15, 298.15, and 303.15) K. J Chem Eng Data 51: 2074-2082.
- Rathnam MV, Jain K, Kumar MSS (2010) Physical Properties of Binary Mixtures of Ethyl Formate with Benzene, Isopropyl Benzene, Isobutyl Benzene, and Butylbenzene at (303.15, 308.15, and 313.15) K. J Chem Eng Data 55: 1722-1726.
- Riddick JA, Bunger WB, Sakano TK (1986) Organic Solvents. Physical Properties and Methods of Purification. Techniques of Chemistry. 4th edn, Willey-Interscience, New York, USA.