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Abstract
Fluid resuscitation in sepsis is the subject of long and complicated debate. Recent research has called into 

question several entrenched clinical positions. Currently, crystalloid, titrated to specific hemodynamic parameters is 
the leading modality of resuscitation in early shock. Central venous pressure, mean arterial pressure, and oxygen 
saturation of mixed venous blood are the indices which measure the adequacy of fluid resuscitation therapy. Lack 
of more accurate and earlier predictors of sufficient fluid resuscitation precludes even more effective therapeutic 
measures. In this review we examine the current evidence that drives fluid resuscitation therapy. 
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Introduction

Cardiovascular system performance in early sepsis exhibits low sys-
temic vascular resistance, increased endothelial leakage, microcirculation 
impairment, and aberrant cardiac function [1]. The first two conditions 
create a state in which profound depletion of intravascular volume is pres-
ent [2,3]. This is further enhanced by large evaporative and gastrointestinal 
fluid loses. As a result hemodynamic stability and organ system functions 
are compromised. Currently, there are two primary means to correct the 
function of the cardiovascular system: fluid resuscitation and vasoactive 
medications [1]. Repletion of the intravascular volume is an initial and 
mandatory step in resuscitation of the septic patient [1,4,5]. Insufficient flu-
id resuscitation hampers the clinical efficacy of the pressors and may lead 
to worsening lactic acidosis [6]. On the other hand, excessive fluid resus-
citation leads to expansion of the interstitial volume, which, in the setting 
of enhanced endothelial leak, seen in sepsis, hampers the delivery of the 
oxygen to the tissue and increases the risk of the end-organ damage [5,7]. 

This review examines the few aspects of early fluid resuscitation in 
sepsis. We focused on the pathophysiology of the intravascular volume 
depletion, indices of successful fluid resuscitation, and strategy for 
treatment. Our review is not intended as thorough review of the vast 
body of evidence, but a targeted analysis of common concepts of fluid 
management strategies sepsis. For this review, we decided to leave off the 
critical aspects of oxygen delivery and utilization by end-organs during 
sepsis. Instead, we focused on several controversial issues related strictly 
to volume resuscitation with the goal of pinpointing limitations in our 
current understanding of the physiology of sepsis and prevailing rationale 
for treatment. We believe that this approach is more beneficial since it 
provides the reader with the background necessary to re-examine the 
current thinking on fluid resuscitation strategies.

Pathophysiology of intravascular volume depletion

The immune system is frequently perceived as the sole driver of the 
pathology of sepsis [1,5,8,9]. Currently, the prevailing belief is that release 
of cytokines, free radical oxygen species, and vasoactive modulators results 
in an excessive drop in blood pressure. The resulting hypotension impairs 
delivery of oxygen to the tissues. As a consequence, the less efficient 
anaerobic metabolism becomes the main energy-generating source. 
In organs with high-energy demands production of ATP by anaerobic 
mechanisms may not be sufficient to sustain the cellular integrity resulting 
in end organ dysfunction and eventual failure [5]. 

Hypotension in sepsis has multifactorial origins [1,5,10]. The most 
appropriate therapy should aim at correction of underlying pathology. 
However, the ability of the clinician to identify the driving force behind the 
hypotension is elusive. One of the most common mechanisms is depletion 
of intravascular volume. There are several pathways by which this can 
occur. 

There are several mechanism involved in the septic shock related 
hypotension. First, there is expansion of the capacity of the cardiovascular 
system. Predominantly, this is a consequence of enhanced vascular 
compliance [11,12]. Increased arterial compliance coupled with decreased 
systemic vascular resistance produce hypotension by rapidly expanding 
the circulatory capacitance [13]. The resulting venous pooling of blood, 
which contributes to the overall volume depletion, can only be effectively 
counteracted with fluid loading [12,14]. Such a fluid loading improve 
hemodynamic on the “macrovascular” levels but it may have adverse effect 
on microcirculation. Concomitantly, a major source of the absolute loss 
of fluid is increased capillary permeability [3,15-18]. Commonly, the net 
movement of the fluid out of capillaries is governed by Starling equation 
[19]. This concept has been modified several times [20,21]. It is elegant 
but it is unclear how to apply it in clinical decision making since several 
variables of the Sterling equation change in sepsis. The increase in the 
filtration coefficient (due to increased number of pores) of the vascular 
epithelium leads to excessive seepage of fluid to the extravascular space [16]. 
Degradation of glycocalyx is enhanced leading to increased permeability 
[22]. Moreover, massive fluid loading, and sepsis itself, effectively lowers the 
serum level of intravascular proteins/albumins further exacerbating escape 
of the fluid from intravascular space resulting in increased in extravascular 
water in some, but not, all studies [3,23,24]. This force counteracts the 
hydrostatic pressure from Sterling equation potentially restoring the 
balance of fluid exchange. On the other hand, capillary hydrostatic 
pressure is mostly determined by the pressure difference between post-
arterioles pressure and pre-venule pressure which is particularly difficult 
to estimate in setting of low sepsis-related SVR [18]. Furthermore, in 
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sepsis the relationship between mean arterial pressure and adequacy of 
microcirculation seems to be abolished [25]. Another confounding variable 
is that total surface area of microcirculation and function of the lymphatics 
are frequently underappreciated in shock [19,26]. To take all these variables 
into account is very complex task that is further hampered by the lack of 
tools to measure them.This model allows for conceptualization of several 
changes occurring in the sepsis but it is unclear how to apply it’s principle 
in management of sepsis. Hence, we focus on measuring the adequacy of 
the intravascular volume to the capacitance of the vascular bed. If there 
is a mismatch cardiac output will diminished since the heart is operating 
on the non-optimal part of the curve. Loading patient with the fluid 
should increase stroke volume. However, such a strategy is problematic 
given that in sepsis not only preload but also left ventricular stroke index 
(a measure of ventricular performance), and left ventricular end-diastolic 
pressure (diastolic function of the heart) are severely affected, adding to the 
difficulty of predicting the effect of fluid load on the cardiac performance 
[2,10,27-29]. These complex interactions force clinician to perform “a 
clinical experiment” with fluid loading and subsequent assessment of the 
changes in cardiac output. Alternatively, physician is trying to meet the 
“resuscitation goal”.

Goal of fluid resuscitation in sepsis

Another measure commonly used in the ICU to guide treatment of 
septic patients is the central oxygen saturation (SvcO2) [1,4,5]. It is an 
important marker reflecting the global balance between oxygen delivery 
and consumption since inadequate delivery of oxygen will result in higher 
extraction ratio [1,9]. In “idealized” sepsis, with high throughput state, this 
value can be artificially high and thus underestimate the true volume deficit 
of the patient. In contrast if the patient has pre-existing condition which 
makes his cardiac output low at baseline, SvcO2 can be low to begin with and 
thus give an overestimation of volume deficit [1,9]. Finally, given that SvcO2 
is global measure of tissue oxygen extraction it is not sensitive enough to 
detect regional variation and/or deficits in tissue oxygen utilization. Since 
regional aberration of flow results in organ damage, SvO2is not sensitive 
enough to provide useful information before multiple organ failure occurs. 
However, it was shown that SvO2 can be utilized to guide the therapy in 
early sepsis [4,37,38]. 

Using a mean arterial pressure value of 65mmHg as threshold reflect-
ing adequate perfusion is supported by some evidence based research [6]. 
This is the loading pressure seen by precapillares but in the settings of low 
SVR it is unclear how it translates into effective perfusion. Interestingly, 
Trzeciak et al found that when measured at early time points flow veloc-
ity correlated with the MAP. Additionally ScvO2 was found to correlate 
inversely with flow velocity. Interestingly these correlations only held for 
the early time-points and were found to not be statistically significant at 
later time-points. These results are in contrast with observation that add-
ing pressor in sepsis did not affect microcirculation [25]. Such differences 
are reflected by the hypothesis that in early/acute sepsis organ failure is a 
consequence of perfusion failure, while late-phase sepsis organ failure may 
be related to bioenergetic failure due to mitochondrial dysfunction [1,9]. 

Lactate production during sepsis is thought to represent lack of oxygen 
delivery to tissues secondary to hypo-perfusion [6]. Since targeting early 
clearance of lactate has shown to confer a mortality benefit to septic patients 
it is logical to ask if this value can be used to monitor the effectiveness of 
resuscitative efforts [39, 40]. Given the relative ease and technical simplicity 
of measuring lactate levels versus ScvO2, the assessment of lactate clearance 
may be more practical and cost effective way to improve the current 
monitoring approach of septic patients in the ICU. One has to bear in mind 
that lactate levels are depended not only of the perfusion mismatch but also 
on liver function among other variables. 

The poor reliability of existing markers to accurately reflect volume 
status during resuscitation underscores how little we know about the 
mechanism by which fluid resuscitation works. On the one hand fluid 
loading results in an increase of extravascular pressure while clinicians 
routinely witness anasarcous patients with multiorgan failure. Alternatively, 
it would be interesting to see what the regional perfusion to a given organ 
system is in these patients, and how much of this is responsible for organ 
failure. 

Type of Fluid

In the last decade the only randomized controlled trial which looked 
at fluid resuscitation during sepsis introduced the concept of Early Goal 
Directed Therapy (EGDT). In this study Rivers et al concluded that ag-
gressive fluid resuscitation initiated upon identification at the Emergency 
Department, and continued for six hours, results in significant short and 
long term benefits including lower mortality, as well as prevention of sud-
den cardiovascular collapse [4]. The 2008 Surviving Sepsis Campaign did 
not address the issue as to which type of fluid is preferred for resuscitation 
during sepsis or septic shock [5,41]. As a result no clear consensus cur-
rently exists as to which type of luid or fluids provide a clear benefit for 
septic patients. 

IV fluids used for resuscitation can be classified into several main 
categories: colloids, crystalloids, and blood products. Crystalloid use 
is currently favored [42]. Colloidshave theoretical advantage of staying 
predominantly intravascularly. This assumes an intact endothelial barrier, 
which is severely malfunctioning in sepsis. This was tested in randomized 
controlled trial of the Saline versus Albumin Fluid Evaluation (SAFE) study 
comparing normal saline to albumin as a resuscitation fluid [43]. This study 
did not showed strong advantage for using of albumin over crystalloids. 
This is in line with several metanalyses [44]. The type of crystalloids to use 
is also the subject of serious debate with data suggesting the Lactate Ringer 
results in less acidosis vs normal saline [45]. 

It is worth mentioning the use of packed red blood cell transfusions 
in conjunction with EGDT. Theoretically, PRBC’s could rapidly replete 
the intravascular space and at the same time increase the oxygen 

The history of fluid resuscitation in sepsis reflects an evolving 
understanding of its pathophysiology. Currently, the Surviving Sepsis 
campaign recommends fluid resuscitation of sepsis patients to a CVP of 
8-12 mm Hg; MAP greater or equal to 65 mm Hg; urine output greater or 
equal to 0.5 ml kg-1hr-1; and central venous oxygen saturation greater or 
equal to 70%, or mixed venous oxygen saturation greater or equal to 65%. 

According to the guidelines, CVP is considered to be an indicator of 
right ventricle preload and thus overall intravascular fluid status. However, 
the value of CVP depends on several dynamic variables like: degree of 
diastolic dysfunction of the heart, positive end expiratory pressure and 
compliance of the lungs, as well as position of the measuring probe [30,31]. 
It is easy to state that patient is volume depleted if CVP equals zero, but if 
the value is 15 cm H2O several possibilities have to be considered. Volume 
overcorrection, worsening heart performance, and/or change in lung 
compliance are some possible scenarios that could be reflected as a high 
CVP even though suboptimal right ventricle loading is present. Some 
propose to evaluate the trend, but that incorrectly assumes that other 
variables affecting CVP are static. So it is not surprising that randomized 
trials and meta-analysis have failed to confirm its clinical utility [31,32]. 
A better assessment of ventricular preload and fluid responsiveness 
is provided by direct measurement of the cardiac output and preload 
using advanced hemodynamic monitoring techniques or transthoracic 
echocardiography [7,29,33-36]. 
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carrying capacity. A study published in 2010 by Fuler et al looked at the 
supplementation of EGDT with PRBC’s transfusion. Not only they did 
not see a statistically significant change in mortality, they did report a 
statistically significant increase in days on mechanical ventilation and 
increased length of stay for the group receiving PRBC’s [46]. This study adds 
to the mounting evidence reflecting the deleterious effects of transfusing 
critically ill individuals.

Summary

Sepsis is a dynamic process with each patient having its own set of variables whose 
interplay determine the course and final outcome of his/her illness. Understanding 
these individual differences is crucial in developing therapeutic approaches tailored 
specifically current clinical situation of the patient. This review has highlighted some 
of the current issues intensivists face every day when dealing with septic patients.
It highlights the need for larger, definitive studies in order to achieve a consensus 
with regards to the best fluid therapy as well as reliable broadly applicable outcome 
measurements such as lactate clearance levels.
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