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Abstract

Post-filtering with a Gaussian filter is commonly used to reduce noise in positron emission tomography (PET)
images. However, its non-selective smoothing obscures the edges of lesions or organs. We compared the
performance of a newly developed anisotropic diffusion filter called “Statistical Transfer with Optimizing Noise and
Edge Sensing” (STONES) with that of the Gaussian filter for small lesions on PET images. We selected seven PET/
computed tomography (CT) image slices of the lungs from three patients with multiple lung metastases. For each
slice, the lesion detection rates by two physicians (A and B) were compared for Gaussian- and STONES-filtered
PET images. The maximum standardized uptake (SUVmax) values of the detected lesions were also compared for
non-, Gaussian-, and STONES-filtered images. Physician A detected 19 lesions in the Gaussian-filtered images and
23 lesions in the STONES-filtered images, while Physician B detected 14 lesions in the Gaussian-filtered images
and 19 lesions in the STONES-filtered images. SUVmax for the STONES-filtered images was significantly higher and
closer to that of the non-filtered images compared to those for the Gaussian-filtered images. STONES improved the
detection rate and increased SUVmax in comparison with Gaussian filter. Thus, it should be more advantageous for
the detection of small lesions with PET.

Keywords: STONES; Anisotropic diffusion filter; Gaussian filter;
FDG-PET; Edge preservation; Lung

Introduction
Positron emission tomography (PET) is a medical imaging modality

with proven clinical value for the detection, staging, and monitoring of
a wide variety of diseases [1,2]. The detection of an abnormal uptake is
a critical process in interpreting PET images. However, such images
intrinsically contain statistical noise, which sometimes makes it
difficult to decide whether or not there is an abnormal uptake. PET
images are produced by reconstructing raw sinogram data acquired
from a scanner [3]. Filtered back projection (FBP) used to be the
algorithm of choice for PET image reconstruction. However, iterative
reconstruction algorithms such as ordered-subset expectation
maximization (OSEM) [4] have replaced FBP because they handle
Poisson noise in the sinogram data more optimally, which improves
the image signal-to-noise ratio (SNR) and eliminates streaky artifacts
[5]. On the other hand, a higher injected activity is known to correlate
with lower levels of noise. However, it is not realistic to simply increase
activity owing to radiation exposure and the cost of 18F-
fluorodeoxyglucose (FDG) production [6]. The acquisition time is
another factor that affects the level of noise in a PET image. In the
practical range, a longer acquisition time correlates with lower levels of
noise [7]. However, increasing the acquisition time tends to cause
patient discomfort and motion artifacts [8]. Another approach to
improving the SNR in PET is to apply a smoothing filter after
reconstruction [9-11]. The Gaussian filter is widely used as a post-
filtering method for noise reduction. However, it obscures the edges of

areas with an abnormal uptake because the smoothing strength is
directly proportional to the local image gradient, which means that
isotropic diffusion filters smoothen edges as well as noise in lesions or
the background. In contrast, anisotropic diffusion filters [12,13] can
preserve edges while they smoothen areas with noise. This is because
the diffusion process for this type of filter is tuned to return large
values in regions with no or small intensity fluctuations and small
values in areas with large intensity variations [13]. Toshiba Medical
Systems (Tochigi, Japan) recently developed an anisotropic diffusion
filter for PET that is based on the adaptive iterative dose reduction
(AIDR) algorithm [14] for use in its computed tomography (CT)
scanners. The new filter is called “Statistical Transfer with Optimizing
Noise and Edge Sensing” (STONES). Theoretically, this new filter can
improve the lesion detection performance, particularly for small
lesions. In this study, we evaluated its effects on PET images of patients
with multiple metastatic lung tumors by visual assessment and
quantitative indices. We compared the results with those of a Gaussian
filter, which is the standard post-filter used at our institution.

Materials and Methods

Subjects
Our institution is a university hospital with a large number of

cancer patients. There are two PET/CT scanners (Aquiduo and
Celesteion, both manufactured by Toshiba Medial Systems), and
PET/CT scans were obtained from either of them randomly. STONES
is currently available only on Celesteion. Among the patients who
underwent FDG-PET/CT scans on Celesteion at our institution
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between September 2015 and May 2016, nine had multiple lung
tumors. Patients without appropriate image slices were excluded before
analysis of the PET images. The institutional review board approved
this study (#B160301013), and written informed consent was waived
because of the retrospective design.

Methods
Image acquisition, reconstruction, and filtering: Patients were

intravenously injected with 3.7 MBq/kg of 18F-FDG after fasting for at
least 4 h. Scans were performed on Celesteion approximately 1 h after
FDG administration. PET data were acquired with the following
parameter values: data acquisition at 120 seconds per bed position,
field of view of 400–700 mm, three iterations, 10 subsets, matrix size of
175 × 175, and reconstruction by attenuation-weighted ordered-
subsets expectation maximization. CT data were acquired at 120 kVp
with an automatic exposure control system and a beam pitch of 0.938
in a 16-detector row mode with a 2-mm slice thickness. We obtained
two series of post-filtered PET images for each scan processed with a
6-mm full-width at half-maximum (FWHM) Gaussian filter and
STONES. Example images are shown in Figures 1 and 2.

Figure 1: Examples of coronal FDG-PET images: (a) Non-post-
filtered coronal image and its post-filtered images processed with
(b) a Gaussian filter and (c) STONES. Noise is reduced in both
post-filtered images, while the edges are better preserved in the
STONES-filtered image.

Figure 2: Examples of axial FDG-PET images processed with the
Gaussian filter and STONES and the corresponding CT image of
the same slice. (c) shows a nodule in the left lung, (b) shows a small
area with increased uptake corresponding to the nodule, and (a)
shows that the area is blurred.

Slice selection and image analysis: We selected seven slices (slices
1-7) from three patients with 1-20 nodular lesions, all of which were 15

mm or less in diameter on CT. Thus, we obtained 14 PET images in
total with two types of post-filtered images for each selected slice.
Slices from the remaining six patients were not selected because they
did not meet the conditions regarding lesion numbers and size or
included lesions in contact with another, which could cause a
difference in lesion counts. The PET images were assessed by two
board-certified nuclear medicine physicians (Physicians A and B) who
were blind to the filter type and corresponding CT image. Fourteen
PET images were randomly shown to each physician, and they were
asked to detect an abnormal uptake. The locations of all abnormal
uptakes were recorded. The results were compared with the
corresponding CT. When a lesion existed on CT at the location with an
abnormal uptake, the PET finding was classified as a true positive. On
the other hand, when a lesion did not exist on CT, the PET finding was
classified as a false positive. When readers did not detect lesions on CT
in the PET image, the PET finding was classified as a false negative.
The lesion detection rate was defined as the number of true positives
divided by the number of corresponding nodular lesions on CT.

Statistical analysis
The Wilcoxon signed-rank test was used to compare the lesion

detection rates and numbers of false positive uptakes for the different
filter types. The Wilcoxon signed-rank test and Mann–Whitney U test
were used to compare the maximum standardized uptake (SUVmax)
values of the detected lesions on the original non-post-filtered images
and two types of post-filtered images. The correlation of SUVmax
among the three types of PET images was also evaluated.

Results

Visual assessment
Physician A detected 19 lesions on PET images processed with the

Gaussian filter and 23 lesions on PET images processed with STONES.
Physician B detected 14 lesions on PET images processed with the
Gaussian filter and 19 lesions on PET images processed with STONES
(kappa values of 0.65 and 0.76 for images processed with STONES and
the Gaussian filter, respectively). Table 1 presents the number of
detected areas with an abnormally increased uptake on PET, the
number of nodular lesions on CT, the lesion detection rate, and the
number of false-positive lesions for each image. There was a significant
difference between the lesion detection rates for PET images processed
with the two filters (0.0416). There was no significant difference
between the numbers of areas with a false-positive uptake (0.0937).

Quantitative assessment
Table 2 presents SUVmax for the detected lesions on PET images

with no post-filtering, those processed with the Gaussian filter, and
those processed with STONES (SUVmax (N), SUVmax (G), and SUVmax
(S), respectively). SUVmax (S) was significantly higher than SUVmax
(G) (P=0.001). SUVmax (S) was higher for 17 out of 23 lesions, while
SUVmax (G) was higher for only six lesions. The average SUVmax was
significantly higher for the former lesions than the latter lesions, as
shown in Figure 3 (P=0.0423). A positive correlation was found
between the values SUVmax (S) − SUVmax (G) and SUVmax (N), as
shown in Figure 4 (R2=0.62, P<0.001). None of the detected lesions
showed an increase in SUVmax with post-filtering regardless of the
filter type.
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Number
of
Nodular
Lesions
(CT)

Physician A Physician B

Gaussian STONES Gaussian STONES

Number
of True-
Positives

Lesion
Detection
Rate (%)

Number
of False-
Positives

Number
of True-
Positives

Lesion
Detection
Rate (%)

Number
of False-
Positives

Number
of True-
Positives

Lesion
Detection
Rate (%)

Number
of False-
Positives

Number
of True-
Positives

Lesion
Detection
Rate (%)

Number
of False-
Positives

Slice
1

1 0 0 0 1 100 0 0 0 0 1 100 0

Slice
2

1 1 100 0 1 100 4 1 100 3 1 100 3

Slice
3

1 1 100 0 1 100 2 1 100 1 1 100 1

Slice
4

15 3 20 0 5 33 0 2 13 0 4 27 0

Slice
5

3 2 67 1 2 67 0 2 67 1 2 67 0

Slice
6

14 7 50 2 8 57 4 5 36 0 7 50 1

Slice
7

10 5 50 1 5 50 1 3 30 0 3 30 0

Total 45 19 42 4 23 51 11 14 31 5 19 42 5

Table 1: The results of image interpretation by two physicians showing the number of nodular lesions on CT, the number of detected areas with
abnormally increased uptakes on PET, lesion detection rate and the number of the false-positive for each image.

SUVmax (N) SUVmax (G) SUVmax (S)

Lesion 1 0.85 0.37 0.58

Lesion 2 1.67 0.61 1.17

Lesion 3 1.12 0.63 0.65

Lesion 4 1.14 0.84 0.95

Lesion 5 1.54 1.13 1.24

Lesion 6 1.37 1.18 1.13

Lesion 7 1.04 0.75 0.75

Lesion 8 1.37 0.92 0.94

Lesion 9 2.19 1.47 1.65

Lesion 10 1.39 0.93 0.91

Lesion 11 1.15 1.04 1.06

Lesion 12 3.27 1.84 2.18

Lesion 13 5.96 4.74 5.85

Lesion 14 2.24 1.73 2.14

Lesion 15 1.25 0.81 0.84

Lesion 16 1.88 1.29 1.26

Lesion 17 1.09 0.93 0.87
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Lesion 18 1.05 0.65 0.60

Lesion 19 2.87 1.96 2.38

Lesion 20 5.04 3.91 4.61

Lesion 21 4.42 3.09 3.66

Lesion 22 2.27 1.56 1.71

Lesion 23 5.96 5.01 5.30

Table 2: SUVmax (N), SUVmax (G) and SUVmax (S) of each lesion.

Figure 3: Positive correlation between the values SUVmax (S) −
SUVmax (G) and SUVmax (N).

Figure 4: Distribution of SUVmax (N) to compare two groups of
lesions: one with SUVmax (S) larger than SUVmax (G), and the other
with SUVmax (S) smaller than SUVmax (G).

Discussion
In this study, we first investigated the visual effect of STONES on

PET images in comparison with the Gaussian filter. The Gaussian filter

smoothens the count of lesion edges, which can degrade the lesion
detection performance. STONES was designed to address this
phenomenon by edge preservation. The results in Table 1 indicate that
STONES may improve the lesion visibility in PET images. The better
visual assessment results were assumed to be due to the edge
preservation by STONES. Because the detection rates of both
physicians improved compared with the Gaussian filter for the same
slices, the improved visibility appears to be due to specific conditions.
Because there was concern that SUV may be decreased by the
smoothing effect of the filters, we then assessed the change in SUVmax
of the detected lesions by post-filtering, which should demonstrate the
effect of edge preservation by STONES against this phenomenon.
Because SUV in FDG-PET was used as a quantitative index to show
the metabolic activity, the change due to filtering should be minimized.
The results in Table 2 indicate that the change in SUVmax with
STONES was less than that with the Gaussian filter. No lesion showed
an increase in SUVmax with post-filtering. These characteristics were
more obvious for lesions with a large SUVmax (N), as shown in Figure
3. For some lesions with SUVmax (N)<2, SUVmax (S) was less than
SUVmax (G), as shown in Figures 3 and 4. No image slice saw a lower
lesion detection rate with STONES than with the Gaussian filter. This
may imply that not only a higher SUVmax but also better edge
preservation and/or background smoothing can improve the lesion
detection rate.

We chose the lung as the target organ of this study because of the
homogeneity of its background uptake on FDG-PET and the simplicity
of judging whether or not there actually is a lesion by referring to
corresponding CT images obtained prior to PET data acquisition. This
is difficult for lesions of other organs such as the liver and pancreas.

The limitations of this study include the small number of subjects
and single-slice image interpretation. More lesions and patients are
required for a more precise statistical analysis and assessment of the
effects of body sizes, respectively. In clinical practice, PET images are
usually interpreted in series, not as independent single images. The
single-slice interpretation in this study may have reduced the detection
rate and increased the false positives. Additionally, the results of the
quantitative assessment cannot be easily interpreted because SUVmax is
not the only index available for uptake quantification. SUVmean (mean
of SUV for each voxel within a lesion), SUVpeak (Average SUV within a
1 cm3 sphere centered in the highest uptake region of the lesion [15]),
and SUVtotal (sum of SUV for each voxel within a lesion) can also be
used for similar purposes. In this study, we chose SUVmax as the first
step to investigate the effects of STONES on SUV because it is by far
the most widely used index in analyzing tumors in quantitative 18F-
FDG oncology studies [15]. However, SUVmax is vulnerable to
statistical noise, which can be attributed to its single-pixel (voxel)
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nature [16]. Computer simulations have shown that SUVmax increases
with the image noise [17]. Also, it has been reported that different SUV
measures result in a considerable degree of variation [18]. Thus, we
need further investigation in order to decide what the results in the
present study mean.

Conclusion
In summary, STONES may be a more suitable post-filter for FDG-

PET than the Gaussian filter when evaluating lung nodules and may
improve the lesion detection performance. A larger-scale study is
required in order to use it in clinical practice.
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