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Introduction
Virosomes are lipid-based, synthetic vesicles comprising of viral 

surface glycoproteins. The presence of these viral peplomers assists the 
recognition and attachment of these entities specifically to their target 
cells. A number of properties of virosomes make them a promising 
candidate for targeted drug and antigen delivery. These vesicles have 
a central cavity that can incorporate a variety of therapeutic agents 
including drug molecules, nucleic acids and proteins. The lipid bilayer 
of the vesicle prevents these molecules from the physicochemical and 
biological adverse reactions in the body. Moreover, due to the presence 
of antigenic viral proteins on the surface, these vesicles can serve as safe 
and effective vaccine and adjuvant models. These characteristics can be 
employed for attaining clinical benefits in a variety of health conditions. 
The paper discusses the biopharmaceutical and immunological aspects 
of virosome technology.

Applications of Virosome Technology 
Viruses are obligate intracellular parasites as they are necessarily 

dependent upon specific host cells for their survival. This principle leads 
to the development of a drug delivery system that mimics the viral pattern 
of cellular infection [1]. Virosomes are composed of a phospholipid 
bilayer with the viral surface glycoproteins protruding from the surface 
of these vesicles [2-4]. The composition of the vesicular membrane 
enables the virosomes to be biocompatible and biodegradable. They 
are efficiently absorbed and distributed to the target site without being 
altered by the physiological processes of the body. Moreover, the 
formulation and composition of virosomes is such that drug molecules 
of diverse nature can be incorporated in them. The lipid bilayer can 
easily integrate the hydrophobic drugs in it. Hydrophilic drugs, on 
the other hand, become a part of the central lacunae [5,6]. Figure 1 
represents the basic assembly of a virosome [7]. In order to attain the 

efficient delivery of the virosomes, the size and surface properties of the 
virosomes can be altered [4]. Alteration in these properties can help 
in achieving varied, yet controllable, biopharmaceutical properties. 
Virosomes do not contain large quantities of preservatives and can be 
prepared without the involvement of any complicated techniques [8]. 

Virosomes can be coupled to an antibody to ensure the targeted 
delivery of a therapeutic agent in order to enhance the tissue 
specificity. These antibodies bind to the specific receptors of cells 
aiding the delivery of drug molecules to these targets. This property 
can, especially, be utilized for carrying the drug molecules with narrow 
safety profiles. Cancer chemotherapeutic agents, for instance, can be 
delivered specifically to the tumors by labeling the virosomes with 
antibodies [9,10]. Virosomes have shown to effectively transport 
macromolecules including drugs, nucleic acids and proteins to various 
cell types including hepatocytes, erythrocytes, immune cells and glioma 
cells [1,11-13]. 

Apart from the targeted delivery of therapeutic agents, virosomes 
preserve the stability and activity of active agents. Therapeutic 
molecules get degraded by the endosome lysosomal degradation 
mechanisms before reaching the target cells in case conventional 
drug delivery procedures are utilized [14]. Virosomes can, however, 
deliver these agents to the target cells without being affected by the host 
defense mechanisms. Once the virosome-lysosome membranes fuse, 
the drug molecules are delivered to the cell to exhibit their therapeutic 
effects. Adequate localization of drugs, nucleic acids and proteins in 
various sub cellular compartments has been observed in a number of 
studies using the virosome technology.
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Abstract
The development of safe and effective models for the delivery of any prophylactic or therapeutic agent remains 

an uphill task for pharmaceutical formulation developers. Drug molecules, nucleic acids, carbohydrates, proteins and 
a variety of other biological and chemical entities are used for attaining pharmacological benefits. However, the major 
challenge remains in the delivery of these agents to the specific site of action in a time-efficient manner. Among the 
many drug delivery systems developed, the nano scale technology of virosomes tends to present an established 
system of delivering the therapeutic agents to the site of pharmacological action. Virosomes are lipid bilayer, 
unilamellar structures that present viral protein on their surface. They are safe, biocompatible and biodegradable 
structures that can achieve ideal pharmacological profile once administered into the body. Tissue targeting, immune 
activation and potentiation are the chief advantages that make them efficient prophylactic and therapeutic agents. 
The review presents the biopharmaceutical applications of virosomes and the immunological and pharmaceutical 
considerations that make them efficient agents for targeting spatiotemporal parameters in the body.
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A chief concern of the virosome based approach is the induction of 
immune response against the viral glycoproteins [15,3]. This property 
is detrimental as it can result in their rapid detection by the immune 
system resulting in the early clearance of the virosomes from systemic 
circulation [16]. However, these proteins can help in inducing a 
prophylactic response against the virus. This property establishes their 
candidature as vaccine and immunological adjuvants. Another issue 
associated with the virosome use is the rapid disintegration in the blood 
compartment [17]. However, if they can reach the site of action within 
a short time of administration in the body, efficient drug delivery can 
be predicted. Furthermore, once inside the cells, the virosomes do not 
replicate, ensuring their safety profile [18,14].

A number of virosome based products have been approved by 
the United States Food and Drug Administration (FDA) for human 
use [19,20]. Table 1 represents various therapeutic agents based upon 
virosome technology [21-27]. The surface glycoproteins of Influenza 
virus, hepatitis viruses and vesicular stomatitis virus have been 
successfully incorporated in a number of vaccine and drug delivery 
systems [28-31]. Virosomes containing cancer chemotherapeutic 
agents, antimalarial, antibacterial and antifungal agents have shown 
efficient release profiles in vitro and in vivo [32-35]. Based upon the 
same principle, bacterial ghosts have been developed [36]. These 
vesicles comprise of the outer shell or the envelop protein of various 
gram negative bacteria [37]. These bacterial ghosts mimic a similar 
pattern as is observed in case of a natural infection. The virosome based 
drug delivery is, however, rapid, safe and effective as opposed to other 
related systems.

Virosomes as Immunopotentiating Agents
Virosomes are the agents that can serve the function of delivering 

antigens and drugs to specific cell types. The chief property exploited by 
the virosome design is the interaction between the antigenic proteins of 
the virus with the cellular receptors [38]. Moreover, the identification, 
uptake and representation of the antigen incorporated in the virosome 
by the relevant antigen presenting cells helps in stimulating the immune 
system. As a result efficient regulatory and effector immune responses 
are generated [1,15]. They initiate both cell mediated and humoral 
arms of immune system [39,40]. Additionally, virosomes induce both 
cytotoxic and helper T-cell responses [41,42].

The first exposure of the virosomes to the immune system occurs 
at the site of administration. In case they are administered into the 
body through a mucosal route (oral, respiratory, vaginal or rectal) 
the localized immune system is activated [43]. The antigen is taken 

up and processed by the follicular dendritic cells and other antigen 
presenting cells (APCs) in the surrounding tissues [40,44]. The B and 
T lymphocytes in the mucosal tissue are directed to produce antigen 
specific immunity. In addition to this, the humoral arm utilizing 
the immunoglobulins IgG, IgM and IgA is also activated [45]. If, 
however, administered into the systemic circulation, virosomes are 
primarily exposed to the process of phagocytosis [39]. After the antigen 
processing, it is presented on the surface of the antigen presenting cells 
and is, then, available for generation of cell-mediated and humoral 
immune response. The proteins incorporated into the virosomal 
assembly have been associated with the induction of a number of 
inflammatory cytokines [46]. An increase in the inflammatory response 
ensures the rapid presentation and processing by the required immune 
machinery. However, if the antigen is incorporated into the virosome 
body, it is released inside the cell. The same essential steps of immune 
activation follow the antigen processing. 

Virosomes cannot only serve as a means to transfer the immunogen 
to the body but can also act as adjuvants for directing the immune 
response to the particular antigen [47]. They, being of particulate 
nature, can easily attract the dendritic cells and other antigen presenting 
cells for attaining immunological benefits [48]. The composition of the 
virosome ensures that the antigen, whether intercalated into the lipid 
bilayer, conjugated to the surface proteins or present in the central 
cavity, is delivered continuously in a sustained manner to the immune 
system [49]. This delay in the release of the antigen can act as a tool 
for focusing the immune response to the particular antigen in order to 
gain a depot-like effect [50]. Furthermore, the combined delivery of the 
antigen and the adjuvant can help in the attainment of an exaggerated 
immune protection against various diseases. Recent studies on murine 
models have exhibited up to four-fold improved humoral response in 
case of virosome based product in comparison to that observed on the 
delivery of nascent antigen [51].

Virosomes as Agents of Targeted Drug Delivery
One of the important prerequisites of a drug delivery system is to 

transport a therapeutic agent effectively to the target site in a timely 
manner. In order to aid the targeted drug delivery, drugs need to be either 
modified or packaged in such a manner that therapeutically effective 
quantities of drug molecules reach the site of action. Modification 
might involve the alteration of physical and/or chemical parameters of 
the drug resulting in the production of new chemical entities, mixing 
with other chemical constituents to modify their in vivo release profiles 
or alteration of physical structures of the drug molecules [52]. These 
processes, ultimately, necessitate the involvement of certain biological 

Figure 1: An overview of the structural composition of a virosome comprising of influenza virus surface glycoproteins in comparison to an electron micrograph  (Glück 
and Metcalfe 2002).

Viral Surface Glycoproteins

Virosome Cavity

Therapeutic Agent

Lipid Bilayer



Citation: Babar MM, Zaidi NSS, Kazi AG, Rehman A (2013) Virosomes-Hybrid Drug Delivery Systems. J Antivir Antiretrovir 5: 166-172. doi:10.4172/
jaa.1000083

Volume 5(7): 166-172 (2013) - 168 
J Antivir Antiretrovir
ISSN: 1948-5964 JAA, an open access journal

parameters for exhibiting the drug action in the body. On the contrary, 
packaging of molecules in suitable vesicles can result in the transport 
of the parent drug to the intended site of action without involving any 
biological process [53]. 

Virosomes can package drugs of a variety of nature in themselves 
[40]. They can serve as excellent means to deliver hydrophilic and 
hydrophobic drug molecules to a specific type of tissue [13]. The 
water-loving or hydrophilic drugs are encapsulated in the central 
compartment during the virosome production process. The lipophilic 
drugs, on the other hand, cannot be encapsulated in this manner and 
are, therefore, embedded in the lipid bilayer. The slow disintegration 
and dissolution of the virosomes within the cell can serve as a means 
of delivering these drug molecules to the intended site of action. The 
encapsulation of various forms of genetic material in the virosome, to 
be used for prophylactic or therapeutic purposes, has been achieved 
in a number of studies [54]. The lipid bilayer of the virosome helps 
in the protection of these therapeutic agents from various nucleic acid 
degrading enzymes including DNAases and RNAases [55]. The viral 
glycoproteins after recognizing the specific cell types help in the fusion 
of the membranes. The genetic material once delivered can, then, be 
utilized by the cellular machinery for the production of the encoded 
genes [56]. 

A combination of proteins is utilized in order to enhance the 
targeted drug delivery of the virosome. In general one of the viral 
protein aims at the attachment of the virosome to the target cell while 
the other viral protein helps in the fusion of the virosome membrane 
with the cellular membrane. For instance, in case of influenza 
virosomes, hemagglutinin is involved in the very specific interaction 
of the viral assembly to the host-cell membrane [57,48]. An additional 
protein, neuraminidase is also incorporated to help in the release of 
the virus from the cell and aiding its entry into the cell. Similarly, in 
case of Hemagglutinating virus of Japan (HVJ) based virosomes, two 
proteins, HN and F, are incorporated into the surface [58]. HN or 
the Hemagglutinating protein is involved in the cell recognition and 
attachment mechanism while the F or fusion protein induces the fusion 
of the two membranes. An important consideration is the amount of 
the drug that can be delivered to the target cells. Virosomes of varied 
sizes can be produced to incorporate a variety of doses. The ultimate 
size of the virosome produced depends upon the nature of the viral 
proteins and the composition of the phospholipid bilayer. Influenza 
virosomes generally measure 150-200 nm while the HVJ based 
virosomes have a mean diameter of 400-500 nm [59,60]. This variation 
in size of various virosomal preparations can act as a possible avenue 
for the delivery of a specific quantity of a macromolecule to the target 
cell. Moreover, these molecules can be protected from the endosome 
lysosomal system from degradation, ultimately, providing a means to 
safely deliver the therapeutic agent to the intended site of action. It has 
been demonstrated that the virosome based product can be delivered, 

intracellularly, with up to three time’s greater efficiency as compared to 
that delivered by using the conventional methods [61]. 

Virosome-Cell Interaction
The chief advantage of the virosome technology is their capability 

to simulate an in vivo infection state that can be helpful in attracting 
the immune players and the provision of macromolecules to the 
respective site of action. Virosomes recognize and bind to the same 
receptors that are utilized in case of a natural viral infection. Sialic acid 
receptors, for instance, are utilized by the influenza virosomes [62]. 
After the cell receptor recognition by the virus, fusion of viral and 
endosomal membrane is observed [38]. In case of influenza virosomes, 
for example, the hemagglutinin (HA) viral protein utilizes its dipartite 
assembly for the same purpose [63]. In addition, the neuraminidase 
(NA) is also included in the virosome assembly as it can enhance the 
immunogenicity and targeting of the virosome to a particular tissue. 
Figure 2 represents the mechanism of virosome interaction with the 
cell surface receptors and its fate in the cell.

Apart from specificity of cell surface interaction, a major advantage 
of virosomes is their capability to enhance antigen presentation. Once 
the virosomes have been administered into the body, both the classes 
of major histocompatability complex, MHC I and MHC II can be 
stimulated [48]. However, the exact choice of the MHC to be activated 
depends upon the nature of the antigen associated with the virosome 
and its ultimate interaction with the Antigen Presenting Cells (APCs). 
Subsequently, the antigen interacts with the endosome, activating the 
helper T-cell mediated immune response. To the contrary, exogenous 
antigens are transported to APCs for the activation of cytotoxic 
T-cell response. B cells are also induced by the APCs through the 
activation of interleukins and other chemokines. The virosomes can, 
therefore, activate both the humoral and cellular arms of the immune 
system of the body. Vesicles containing the surface glycoprotein of 
the Hemagglutinating Virus of Japan (HVJ), for instance, have been 
shown to exhibit sustainable patterns of immune response on repeated 
administration of these virosomal units [64].

The virosome-receptor interaction has been investigated for the 
treatment of a number of diseases including parasitic diseases, viral 
diseases, neurological disorders and many other metabolic disorders 
[11,65]. In all the cases, the main aim is the provision of a nano-sized 
protein, nucleic acid or a drug molecule to the intended site of action. 
Peptides and proteins have been very successfully conjugated with the 
virosome-surface glycoproteins. Vaccines have been developed against 
the Respiratory Syncytial Virus (RSV) using the influenza virosomes 
[14]. By fusing the conserved proteins of the Hepatitis C virus surface 
proteins with the virosomal proteins positive induction of cytotoxic 
T-cell immune response. Similarly, epitopic regions of B-cell have 
been devised using influenza virosomes specifically against malaria 
[66]. Additionally, multiple pathogens have been targeted using 
the virosome system. This mechanism, therefore, helps in avoiding 
repeated and multiple dosing for immunization purposes.

The interaction of the virosome with a particular cell is dependent 
upon a number of physical and chemical factors. The size of the 
virosomes is of prime importance in this respect. It can be adjusted by 
altering the phospholipid and protein composition of the vesicle. The 
size attained by the virosome should be ideal for uptake by the receptor 
mediated endocytosis process [38]. They can only then be involved 
in the activation of humoral and cell-mediated arms of the immune 
system. After reaching a particular tissue, the virosome can provide 
prolonged residence time in a particular organ or tissue before being, 

Therapeutic/ Prophylactic Purpose References
Influenza virus vaccine [21]

Hepatitis A virus vaccine [22]
Hepatitis B virus vaccine [23]
Hepatitis C virus vaccine [24]

Antifungal  agents [25]
Cancer chemotherapy [26]
Antiparasitic agents [27]

Table 1: Virosome Based Products Approved and under review by regulatory 
authorities.
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ultimately, decreased in size and draining to the associated lymphoid 
tissue [67,68]. 

Synthesis and Bioprocessing of Virosomes 
The general composition of liposomes and virosomes is essentially 

the same. Both are composed of a lipid bilayer enclosing a cavity that 
can be utilized for carrying a drug, nucleic acid or other similar entity 
to the target site. The main problem associated with the liposomes is 
their rapid clearance by the reticuloendothelial system of the body [34]. 
A number of modifications have been proposed by the researchers 
in order to deal with these issues including the coating of liposomes 
with a chemical that can help the liposome to act as a stealth vesicle, 
thereby, preventing the detection from the immune system of the 
body. Another more useful method is the labeling of the synthetically 
prepared vesicle by a ligand or an antibody that can function as a 
marker for the detection and ultimate transport to the target site [69]. 
Virosomes, exploit this mechanism for demonstrating their function. 
The composition of the virosomes is such that it incorporates a lipid 
bilayer, much similar to the liposomal membrane, to enhance the 
interaction and passage through the biological membranes. However, a 
major step prior to ensuring the interaction between the virosome and 
the cell membrane is the delivery to the target tissue or organ. In order 
to achieve this target, viral proteins that are involved in the cell fusion 
process are incorporated into the lipid bilayer. The drug or the nucleic 
acid to be delivered to a specific site is added into the formulation 
resulting in the transfer of the molecule to the respective site of action. 
Moreover, virosomes tend to exhibit the viral glycoproteins on their 
surface; this further enhances the presentation of the viral proteins to 
the immune system resulting in their easy detection and presentation 
for enhancing the immunization against the encoded viruses. 

During the formulation of virosomes, the exact nature and quantity 
of the individual components has to be optimized according to the 
intended purpose of use. In general, lecithin, phosphatidyl choline 
and phosphatidyl ethanolamine are considered the basic components 
for the production of stable virosome structures [70-72]. The viral 

proteins usually intercalated into the lipid bilayer structure are the 
surface glycoproteins of viruses. These proteins are generally involved 
in the fusion of the viral envelop with the host-cell membrane, thereby 
providing the virosome an opportunity to deliver the drug molecule 
or any other ligand into the cell. The complete virosome assembly is 
generally spherical in shape, with viral proteins protruding out of the 
surface. In order to produce the virosomes, virus is inactivated using 
various membrane degrading agents. This results in the extraction of 
viral glycoproteins [49]. At this stage detergents are added into the 
viral protein-phospholipid mixture in order to enhance the interaction 
between the two, otherwise, immiscible agents [57]. The lipid bilayer 
is then self-assembled resulting in the production of virosomes. 
This pattern not only helps in the formation of vesicular entities but 
also provides an opportunity for the incorporation of drugs of both 
hydrophilic and lipophilic nature into the system [70]. The hydrophilic 
drugs are added in to the solvent system while the hydrophobic drugs 
are added into the phospholipid mixture to ensure the solubility of 
these compounds. 

The incorporation of the viral glycoproteins not only helps in the 
targeting of certain tissues but also aid the stabilization of the virosomal 
assembly. This property, therefore, enhances the ease of detection and, 
hence, the antigen presentation to the immune system. Likewise, the 
exact quality and quanitity of each of the different phospholipids 
incorporated into the virosomal preparation is evaluated. The trapping 
efficiency is increased by making larger virosomes that can help in 
entrapment of larger quantities of drugs and other macromolecular 
structures. A number of preparations of virosomes intended for 
administration through oral, parenteral, topical and respiratory routes 
[73-76]. The main target after the administration of a virosomal 
preparation is to attain therapeutically effective levels of the preparation 
in the blood. Once these vesicles are in systemic circulation, they can 
reach the specific tissue and help in yielding the desired therapeutic 
effects. Additionally, virosomes can be used for the transfer of DNA 
fragments of up to 100kb [77]. Antibodies labeling using various 
families of immunoglobulin (IgG and IgM) have also been exhibited 

Figure 2: Mechanism of drug and genetic material delivery to the target cell using virosome technology. A. Interaction of the virosomes with cell surface receptors. B. 
Release of the encapsulated drug molecules in the target cell.
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in various virosomal assemblies. Virosomes have also been labeled 
using monoclonal antibodies (mAbs) and tissue specific monoclonal 
antibody fragments (Fab). Virosomes delivered after labeling have been 
observed to attain efficient pharmacological profile. Apart from their 
stability, a major factor is the distribution to various tissues that are to 
be targeted by any therapeutic agent. Erythrocytes, hepatocytes, tumor 
cells and cells of the respiratory and gastrointestinal system have been 
targeted using the technique [41,71,72]. 

Large scale production of virosomes follow batch processing 
phenomenon. The viral antigens after extraction are treated with 
phospholipids in the presence of a detergent. The product is, then, 
subjected to various purification and sterilization mechanisms. The 
finished product is usually suspended in a buffer solution in order to 
stabilize the formulation. Sodium chloride, potassium chloride and 
other salt formulations are generally used for the purpose [78,79]. 
This process makes the virosome not only stable but also safe for 
administration into the body. In order to evaluate the virosomes 
in a preparation, simple quantitative analysis is performed that are 
specific to the viral proteins. Electron microscope based analysis can 
be performed for determining the structure and size of the virosome. 
The individual tests performed for the analysis of the virosome vary 
depending upon the nature of the substance to be evaluated. Viral 
proteins are detected by relatively simpler tests including sodium 
dodecyl sulphate- polyacrylamide gel electrophoresis (SDS-PAGE). 
Fusion activity can be determined using the fluorescent resonance 
energy transfer assay (FRET) and other cell binding assay procedures 
[29,80,81]. The product, after being characterized and tested, is 
available for administration through an appropriate route.

Future Directions
Virosomes tend to present a novel, yet established, drug delivery 

system. A number of virosome based products are currently available 
in the market to fulfill the prophylactic, therapeutic and diagnostic 
functions. Virosome based vaccines can serve as the function of actively 
inducing an immune response. Similarly, they can serve as ideal 
candidates for serving as an adjuvant. Possessing the capability to carry 
macromolecules, virosomes are ideal agents to serve as drug delivery 
systems. These drug delivery platforms have ideal pharmacokinetic and 
pharmacodynamics properties ensuring the safe and effective means 
to exploit the therapeutic properties of a drug molecule. However, 
variation in the therapeutic response observed in case of a virosome 
based therapy hinders its acceptance as a mainstream drug delivery 
system. The fusion capability of the virosome varies with the number 
of viral proteins available on the surface of the virosomes. Moreover, 
the batch processing and complicated assay procedures impede the 
usefulness of virosomes. Efforts, therefore, need to be made in this 
respect to develop easy assay procedures. Addressing these concerns 
would certainly ensure the approval and availability of a greater 
number of virosome-based biopharmaceuticals.
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