

Open Access

Vibrational Analysis and NLO Impact of Coordinate Covalent Bond on Bis (Thiourea) Cadmium Bromide: A Comparative Computational Study

Durga R¹, Sundararajan RS², Ramachandraraja C², Ramalingam S¹, Anand S^{1*}

¹Department of Physics, AVC College, Mayiladuthurai, Tamil Nadu, India ²Department of Physics, Government Arts College, Kumbakonam, Tamil Nadu, India

Abstract

In the present research work, the thorough experimental and theoretical investigation is made on the crystal compound; Bis (thiourea) Cadmium Bromide (BTCB) by recording FT-IR, FT-Raman and UV Visible spectra. The computational calculations are carried out by HF, CAM-B3LYP, DFT (B3LYP and B3PW91) and LSDA methods with 3-21 G (d, p) basis sets and the corresponding results were tabulated. The compound belongs to orthorhombic crystal class with space group of Pn2, a and point group of symmetry C_{2v} . The NLO properties have been studied by calculating average Polarizability and diagonal hyperpolarizability. The physical and chemical properties of the coordination complex due to the Vander Waals link are found to be enriched. The thermodynamical parameters of TGA and DSC are compared with calculated values obtained from NIST thermodynamical program. The variation of specific heat capacity, entropy and enthalpy with respect to different temperature are displayed in the graph and are discussed.

Keywords: Bis(thiourea) cadmium bromide; BTCB; NLO; Polarizability; Diagonal hyperpolarizability; NIST; TGA-DSC

Introduction

Now a day, the production of NLO crystal materials using organic compounds with the addition of metal oxides has much attention due to its tremendous electronic and optical applications. Generally, the crystals made up of organic amine derivatives have rich NLO properties. The high symmetry organic amine derivatives; Thiourea has high NLO coefficients with stable physical and chemical properties. Generally, the metal oxide materials are able to have rich semiconducting properties and optical activities. When such metal oxides are coupled with thiourea, the physiochemical, electrical and optical properties are enriched. Due to the symmetrical presence of S and N donors in thiourea, the metal oxides are connected through coordinate covalent bonds strongly. It is a new attempt to fabricate metal organic compound; Bis(thiourea) Cadmium Bromide (BTCB). After careful screening the literature, it is found that no quantum chemical computational work has been made on Bis (thiourea) Cadmium Bromide (BTCB) so far. In this present work, the structural properties, vibrational study, frontier molecular analysis, NMR, UV-Visible spectral investigations have been carried out. The electrical, optical and chemical parameters have been calculated by using HF, CAM, DFT and LSDA method with 3-21 G (d, p) basis set. The optical activity and NLO property analysis have been performed using appropriate quantum computational tools. Other industrial uses of thiourea include the production of flame retardant resins and vulcanization accelerators. Thiourea is used as an auxiliary agent in light-sensitive photocopy paper and almost all other types of copy paper.

Specification on Recording of Spectra

- The FT-IR and FT-Raman spectra are recorded in Bruker IFS 66V spectrometer in the range of 4000-100 cm⁻¹ with the spectral resolution is ± 2 cm⁻¹.
- The Thermo Gravimetric Analysis (TGA) and Differential Thermal Analysis (DTA) curves for BTCB are obtained using Simultaneous Thermo gravimetric Analyzer (STA) 409C (NETZSCH) at a heating rate of 10°C/min in nitrogen.
- The absorption spectrum of BTCB is recorded using Varion Cary

5E UV-Vis-NIR spectrophotometer in the range 200-700 nm with high resolution.

Computational Details

In this research work, the most fascinating level of theories RHF and DFT (LSDA, B3LYP and B3PW91) were carried out using the basis sets 3-21G (d, p). All these calculations were performed using GAUSSIAN 09W [1] program. In DFT methods, Becke's three parameter hybrid function combined with the Lee-Yang-Parr correlation function (B3LYP) [2,3], Becke's three parameter exact exchange function (B3) [4] combined with gradient-corrected correlation function of Lee, Yang and Parr (LYP) [5,6] and Perdew and Wang (PW91) [6,7] predict the best results for molecular geometry and vibrational frequencies for moderately larger molecules. The calculated frequencies are scaled down to yield the coherent with the observed frequencies. The scaling factors for scaling the harmonic frequencies are 0.864, 0.874, 0.90 and 0.934 for HF/3-21G (d, p) method. For DFT (B3LYP)/3-21G (d, p) basis set, the scaling factors are 0.92, 0.934, 0.96 and 0.98. For DFT (B3PW91)/3-21G (d, p) basis set, the scaling factors are 0.912, 0.92 and 0.93. For CAM (B3LYP)/3-21 G (d, p) basis set, the scaling factors are 0.91, 0.92, 0.93 and 0.96. For LSDA/3-21 G (d, p) level of basis set, the scaling factors such as 0.93, 0.94, 0.96, 0.97 and 0.98 are used. The observed (FT-IR and FT-Raman) and calculated vibrational frequencies with assignments are submitted in Table 1. Experimental and simulated spectra of IR and Raman are displayed in the Figures 1 and 2 respectively.

*Corresponding author: Anand S, Department of Physics, AVC College, Mayiladuthurai, Tamil Nadu, India, Tel: +919443650530; Fax: +919443650530; E-mail: anandphy09@gmail.com

Received September 01, 2015; Accepted October 01, 2015; Published October 10, 2015

Citation: Durga R, Sundararajan RS, Ramachandraraja C, Ramalingam S, Anand S (2015) Vibrational Analysis and NLO Impact of Coordinate Covalent Bond on Bis (Thiourea) Cadmium Bromide: A Comparative Computational Study. J Theor Comput Sci 2: 133. doi:10.4172/2376-130X.1000133

Copyright: © 2015 Durga R, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Methods							
Geometrical Parameters	HF	B3LYP	B3PW91	CAM – B3LYP	LSDA		
	3-21G	3-21G	3-21G	3-21G	3-21G		
	Bon	d length(Å)				
(S1-C3)	1.783	1.778	1.770	1.769	1.764		
(S1Cd17)	2.755	2.703	2.679	2.665	2.580		
(S2-C4)	1.782	1.778	1.770	1.769	1.764		
(S2Cd17)	2.755	2.703	2.679	2.665	2.580		
(C3-N8)	1.326	1.346	1.344	1.339	1.338		
(C3-N14)	1.312	1.329	1.327	1.322	1.323		
(C4-N5)	1.312	1.329	1.327	1.322	1.323		
(C4-N11)	1.326	1.346	1.344	1.339	1.338		
(N5-H6)	1.000	1.017	1.016	1.015	1.026		
(N5-H7)	1.008	1.035	1.037	1.033	1.001		
(N8-H9)	0.999	1.015	1.014	1.013	1.024		
(NO-FTU)	0.990	1.015	1.013	1.012	1.023		
(N11 H12)	0.999	1.013	1.014	1.013	1.024		
(N14 H15)	1 000	1.013	1.015	1.012	1.025		
(N14-H15) (N14-H16)	1.000	1.017	1.010	1.013	1.020		
(Cd17-Br18)	2 662	2 655	2 642	2 628	2 604		
(Cd17-Br19)	2.002	2.000	2.042	2.020	2.004		
(6011-1110)	2.002 Boi	nd angle(°	2.042	2.020	2.004		
(C3-S1Cd17)	110.075	106.708	, 106.107	106.980	96.468		
(C4-S2Cd17)	110.081	106.744	106.124	106.979	96.446		
(S1-C3-N8)	117.151	116.711	116.682	116.737	116.481		
(S1-C3-N14)	123.523	123.717	123.570	123.675	122.999		
(N8-C3-N14)	119.319	119.565	119.740	119.581	120.513		
(S2-C4-N5)	123.525	123.711	123.570	123.678	123.001		
(S2-C4-N11)	117.150	116.710	116.684	116.736	116.485		
(N5-C4-N11)	119.318	119.572	119.739	119.578	120.507		
(C4-N5-H6)	121.774	121.48	121.650	121.517	121.490		
(C4-N5-H7)	121.625	121.548	121.328	121.545	121.323		
(H6-N5-H7)	116.595	116.956	117.002	116.929	117.008		
(C3-N8-H9)	122.596	122.604	122.665	122.593	122.652		
(C3-N8-H10)	119.155	118.627	118.536	118.628	118.070		
(H9-N8-H10)	118.248	118.765	118.793	118.777	119.276		
(C4-N11-H12)	122.597	122.608	122.667	122.594	122.647		
(C4-N11-H13)	119.155	118.631	118.535	118.628	118.075		
(H12-N11-H13)	118.247	118.758	118.792	118.776	119.276		
(C3-N14-H15)	121.775	121.476	121.652	121.515	121.486		
(C3-N14-H16)	121.621	121.550	121.325	121.542	121.327		
(H15-N14-H16)	116.597	116.956	117.003	116.934	117.008		
(51C01752)	90.218	98.064	98.935	98.401	111.303		
(S1Cd17-Br10)	103 / 70	104 607	10/ //6	10/ 700	103 700		
(S2Cd17-Br18)	103.479	104.007	104.440	104.700	103.722		
(S2Cd17-Br19)	114 664	114 474	11/ /3/	11/ 5/0	112 571		
(Br18-Cd17-Br19)	121 704	118 981	118 636	118.379	113 151		
	Dihec	Iral angles	110.000 s(°)	110.070	110.101		
(Cd17S1-C3-N8)	157.572	157.873	156.581	157.768	145.295		
(Cd17S1-C3-N14)	-23.297	-23.022	-24.347	-23.101	-35.547		
(C3-S1Cd17S2)	148.123	152.518	155.168	152.923	178.510		
(C3-S1Cd17-Br18)	-103.927	-97.373	-94.406	-96.613	-65.476		
(C3-S1Cd17-Br19)	30.878	34.527	36.944	34.697	57.193		
(Cd17S2-C4-N5)	-23.266	-22.940	-24.300	-23.081	-35.541		
(Cd17S2-C4-N11)	157.604	157.961	156.623	157.783	145.299		
(C4-S2Cd17S1)	148.059	152.297	155.120	152.924	178.547		
(C4-S2Cd17-Br18)	30.816	34.408	36.889	34.688	57.225		
(C4-S2Cd17-Br19)	-103.998	-97.559	-94.464	-96.620	-65.447		

(S1-C3-N8-H9)	178.030	176.100	175.740	176.662	173.723
(S1-C3-N8-H10)	-1.9	-3.261	-3.506	-2.989	-6.129
(N14-C3-N8-H9)	-1.137	-3.043	-3.368	-2.504	-5.456
(N14-C3-N8-H10)	178.931	177.594	177.384	177.843	174.691
(S1-C3-N14-H15)	179.438	177.664	177.421	178.147	172.891
(S1-C3-N14-H16)	0.266	-0.821	-0.982	-0.786	-2.125
(N8-C3-N14-H15)	-1.449	-3.255	-3.534	-2.746	-7.983
(N8-C3-N14-H16)	179.378	178.259	178.062	178.319	176.998
(S2-C4-N5-H6)	179.461	177.827	177.384	178.136	172.849
(S2-C4-N5-H7)	0.288	-0.721	-1.000	-0.803	-2.154
(N11-C4-N5-H6)	-1.426	-3.098	-3.566	-2.751	-8.024
(N11-C4-N5-H7)	179.400	178.351	178.048	178.308	176.971
(S2-C4-N11-H12)	178.050	176.238	175.734	176.642	173.661
(S2-C4-N11-H13)	-1.884	-3.250	-3.504	-3.013	-6.134
(N5-C4-N11-H12)	-1.116	-2.898	-3.379	-2.530	-5.519
(N5-C4-N11-H13)	178.948	177.611	177.381	177.813	174.684

Page 2 of 12

Table 1: Optimized geometrical parameters for Bis (thiourea) Cadmium Bromide (BTCB) computed at HF, DFT (B3LYP& B3PW91), CAM - B3LYP and LSDA with 3-21G (d, p) basis sets.

Figure 1: Crystal view and structure of BTCB.

The ¹H and ¹³C NMR isotropic chemical shifts are calculated (Gas, DMSO, Chloroform and CCl.) by the GIAO method with IEFPCM model [8-18] using B3LYP/6-311++G (d, p) level. The electronic properties; HOMO-LUMO energies, absorption wavelengths and oscillator strengths are calculated using B3LYP method of the timedependent DFT (TD-DFT) [19-21], basing on the optimized structure in gas phase and solvent [DMSO, Chloroform and CCl₄] mixed phase. Thermodynamic properties have been calculated from 100-1000°C in gas phase using B3LYP/6-311++G(d, p) method. Moreover, the dipole moment, nonlinear optical (NLO) properties, linear polarizabilities and first order hyperpolarizabilities and chemical hardness have also been studied.

Results and Discussion

Molecular geometry deformational analysis

From the crystal studies, it is observed that, the BTCB belongs to orthorhombic crystal class with space group of Pn2,a and point

Page 3 of 12

group of symmetry C_{2v} . The compound possesses the symmetrical geometry in which Cd ion is at the tetrahedral coordination site with two Br₂ atoms and two NH₂ atoms at its top end. This gives rise to a three dimensional bonding network. All thiourea molecules are planar and are equidistant from the central cadmium atom. This structure gives a polymeric character to BTCB molecule with asymmetric units contributing additively to the effective nonlinearity. The molecular structure is optimized by Berny's optimization algorithm using Gauss view program and is shown in Figure 3. The comparative optimized structural parameters such as bond length, bond angle and dihedral angle are presented in Table 2. The present compound contains cadmium metal atom, bromide atoms and four amino groups.

Figure 2: Experimental [A] and calculated [B, C and D] FT-IR spectra of Bisthiourea Cadmium Bromide (BTCB).

Symmetry NoFirm CoveFirm RametSirm CoveSirm RametSirm CoveS			Observed				Methods				
No. Process Pr	S.	Symmetry Species	Freq (cr	uency n-¹)	HF	B3LYP	B3PW91	CAM – B3LYP	LSDA	Vibrational Assign-	
Rama (A, p) 1 A, 3350 s 3365 s 3345 s 3345 s 3342 3341 3344 (N+h) u 3 A, 3320 s 3321 s 3366 3321 3362 s 3319 (N+h) u 4 A, 3320 s - 3283 3222 s 2220 (N+h) u (N+h) u 5 A, 3250 s - 3279 3268 3284 3249 3288 (N+h) u 6 A, 3250 s 3250 w 3247 3248 3284 3249 3258 (N+h) u 7 A, 3250 s 3250 w 3247 3248 3284 3249 3288 (N+h) t 10 A, 1610 s 1610 m 1621 1544 1608 1609 1607 (N+h) t 11 A, 1610 s 1610 s 1553 1554 1568 (N+h) t 12 B_2 1560 s 170 1553 1554 1569 (N+h) t 14 A,	10.	C _{2v}	FT-IR	FT-	3-21G	3-21G	3-21G	3-21G	3-21G	ments	
A ₁ 3345 vs 3349 3349 3349 3349 3349 3449 (N+H) v 2 A ₄ 3345 vs 3345 vs 3345 3342 3337 3344 (N+H) v 4 A ₄ 3300 s - 3283 3292 3292 3292 (N+H) v 5 A ₄ 3200 s - 3279 3282 3292 3292 (N+H) v 6 A ₄ 3200 s - 3279 3284 3284 3284 S288 (N+H) v 7 A ₄ 3250 s 3250 vs 3247 3248 3284 3248 S284 (N+H) v 1 1 A ₄ 1600 m 1600 m 1601 m 1522 1530 1501 1500 m 1508 N+H) t 1 A ₄ 1600 m 1610 m 1620 m 1561 1560 m 1561 15	_	•	0050 -	Raman	(d, p)	(d, p)	(d, p)	(d, p)	(d, p)	AL 10	
2 A ₁ 3320 vs 3324 s 3342 3342 3342 3342 3344 (N+H) u 3 A ₁ 3320 vs 3320 vs 3221 3326 3326 3319 (N+H) u 6 A ₁ 3220 s - 3279 3282 3293 3292 3292 (N+H) u 6 A ₁ 3250 s 3279 3288 3284 3249 3227 (N+H) u 7 A ₁ 3250 s 3250 vs 3245 3245 vs 3245 3245 3247 3248 3233 3237 (N+H) u 9 A ₁ 1610 m 1602 m 1531 1550 1550 1558 1559 1577 14171 1419 1417 1419	1	A ₁	3350 S	3350 S	3346	3349	3349	3341	3348	(N-H) U	
A ₁ 33200 m 3321 m 3298 mm 3291 mm <td>2</td> <td>A₁</td> <td>3345 vs</td> <td>3345 s</td> <td>3345</td> <td>3342</td> <td>3342</td> <td>3337</td> <td>3344</td> <td>(N-H) U</td>	2	A ₁	3345 vs	3345 s	3345	3342	3342	3337	3344	(N-H) U	
4 A, b 3308 1-3283 3292 3296 3297 3298 (N+1) u 5 A, b 3290 s	3	A ₁	3320 vs	3320 m	3321	3306	3321	3326	3319	(N-H) U	
A 3295 - 3279 3222 3293 3292 3292 3293 6 AA 3290s 3250s 3250s 3250s 3247 3284 3284 3284 3284 3284 3284 3284 3284 3233 3237 (N+H) u 8 AA, 1610s 1610m 1622 1618 1608 1609 1607 (N+H) a 9 AA, 1610s 1610m 1622 1618 1608 1659 1588 (N+H) a 11 AA, 1590s 5. 1580 1553 1554 1586 (N+H) a 13 B ₂ 1540w 1540v 1433 1452 1462 1453	4	A ₁	3300 s	-	3283	3292	3296	3297	3298	(N-H) U	
6 Λ, 3290 - 3279 3288 3277 3288 3284 </td <td>5</td> <td>A₁</td> <td>3295 s</td> <td>-</td> <td>3279</td> <td>3282</td> <td>3293</td> <td>3292</td> <td>3292</td> <td>(N-H) U</td>	5	A ₁	3295 s	-	3279	3282	3293	3292	3292	(N-H) U	
7 Λ 3250 s 3240 s 3247 s 3248 s 3249 s 3249 s 3248 s 3249 s 3248 s 3249 s 3248 s 3249 s 3248 s 3224 s 3224 s 3224 s 3224 s 3224 s 3223 s 3237 s (N+H) v 9 A 1610 s 1600 m 1621 s 1618 s 1650 s 1580 s 1581 s	6	A ₁	3290 s	-	3279	3268	3257	3288	3288	(N-H) U	
8 A, 3245 vs 3245 vs 3247 vs 3245 vs 3247 vs 3245 vs 3237 vs (N+H) v 9 A, 1610 vs 1610 m 1622 1618 1608 1609 1607 (N+H) δ 10 A, 1500 s - 1598 1554 1564 1588 (N+H) δ 11 A, 1500 s - 1580 1553 1554 1566 1537 (N+H) δ 12 B, 1540 vs 1533 1526 1528 1527 1483 1459 (N+H) δ 14 A, 1490 m - 1476 1448 1447 1449 1443 1447 1443 (N+H) δ 15 A, 1420 s - 1408 1409 1419 1417 1413 (N+H) δ 16 A, 1420 s - 1372 1373 1372 1380 (C-N) v 18 B, 1200 vs 120 vs 1228 <td>7</td> <td>A₁</td> <td>3250 s</td> <td>3250 w</td> <td>3247</td> <td>3248</td> <td>3284</td> <td>3249</td> <td>3258</td> <td>(N-H) U</td>	7	A ₁	3250 s	3250 w	3247	3248	3284	3249	3258	(N-H) U	
9 A, b 1610 m 1620 m 1622 m 1618 m 1608 m 1609 m 1607 m 1607 m 1608 m 1609 m 1607 m 1608 m 1600 m 1600 m 1600 m 1677 m 1584 m 1586 m (N-H) δ 13 B2 1540 m 1540 m 1533 m 1554 m 1554 m 1586 m 1577 m 1489 m 1470 m 1476 m 1494 m 1480 m 1477 m 148 m 1450 m 1450 m 1450 m 1450 m 1450 m 1460 m 1300 m <t< td=""><td>8</td><td>A₁</td><td>3245 vs</td><td>3245 w</td><td>3247</td><td>3245</td><td>3229</td><td>3233</td><td>3237</td><td>(N-H) U</td></t<>	8	A ₁	3245 vs	3245 w	3247	3245	3229	3233	3237	(N-H) U	
10 A, 1600 m 1600 m 1621 1594 1590 1596 1571 1571 1584 1586 (N-H) δ 12 B ₂ 1565 s - 1580 1553 1554 1566 1553 1571 1586 1573 (N-H) δ 14 A, 1490 m - 1476 1494 1480 1477 1489 (N-H) δ 15 A, 1470 s - 1476 1494 1480 1477 1489 (N-H) δ 16 A, 1450 v 1450 s 1449 1443 1477 1433 (N-H) δ 17 A, 1420 v - 1408 1499 1118 1417 1413 (N-H) δ 18 A, 1380 v 1310 v 1316 1211 1232 1302 v 1302 v (C-N) v 20 B ₂ 1200 v 1200 v 1203 v 1204 v 1208 v 1208 v 1208 v (C-N) v	9	A ₁	1610 s	1610 m	1622	1618	1608	1609	1607	(N-H) δ	
11 A, 1590 s - 1598 1577 1571 1584 1586 (N+H) δ 12 B ₂ 1565 s - 1580 1553 1554 1566 1569 (N+H) δ 13 B ₂ 1540 w 1540 vs 1533 1526 1526 1537 (N+H) δ 15 A, 1470 vs - 1476 1494 1480 1477 1499 (N+H) δ 16 A, 1450 vs 1450 s 1442 1442 1443 1477 1449 1433 (N+H) δ 17 A, 1420 s - 1408 1409 1419 1417 1413 (N+H) δ 18 A, 1380 s - 1372 1376 1373 1372 1380 (C-N) u 19 B ₂ 1210 s 1208 1211 1233 1264 1239 (C-N) u 12 B ₂ 1210 s 1208 1211 1233 1264 1239 (C-N) u 12 B ₂ 190 s - <t< td=""><td>10</td><td>A₁</td><td>1600 m</td><td>1600 m</td><td>1621</td><td>1594</td><td>1590</td><td>1590</td><td>1588</td><td>(N-H) δ</td></t<>	10	A ₁	1600 m	1600 m	1621	1594	1590	1590	1588	(N-H) δ	
12 B ₂ 1565 s - 1580 1553 1554 1566 1569 (N+H) δ 13 B ₂ 1540 w 1540 vs 1533 1526 1528 1526 1537 (N+H) δ 14 A _A 1490 w - 1453 1452 1453 1459 (N+H) δ 16 A _A 1450 w 1450 s 1448 1457 1449 1453 (N+H) δ 17 A _A 1420 s - 1408 1409 1419 1417 1413 (N+H) δ 18 A _A 1380 s 1310 s 1316 1291 1326 1302 (C-N) u 19 B ₂ 1200 s 1200 s 1210 1232 1207 1208 (C-N) u 21 B ₂ 1210 s - 1189 1187 1186 1192 1285 (C-N) u 23 B ₂ 1900 s - 1189 1187 1186 1197 1208	11	A ₁	1590 s	-	1598	1577	1571	1584	1586	(N-H) δ	
13 B ₂ 1540 w 1540 vs 1533 1526 1528 1526 1537 (N+H) δ 14 A ₁ 1490 m - 1476 1494 1480 1477 1489 (N+H) δ 15 A ₁ 1470 s - 1453 1442 14457 1449 1447 (N+H) δ 16 A ₁ 1420 s - 1408 14477 1449 1443 (N+H) δ 17 A ₁ 1420 s - 1308 1419 1417 1413 (N+H) δ 18 A ₁ 1380 s 1310 s 1316 1291 1326 1302 (C-N) u 19 B ₂ 1200 s 1200 m 1208 1211 1233 1264 1239 (C-N) u 12 B ₂ 1240 m 1240 m 1207 1208 1221 1208 (C-N) u 13 B ₂ 1190 m - 1207 1208 1221 1208 (C	12	B ₂	1565 s	-	1580	1553	1554	1566	1569	(N-H) б	
14 A, 1490 m - 1476 1489 1480 1477 1489 (N+H) δ 15 A, 1450 w 1450 s 1449 1448 1457 1449 1453 (N+H) δ 16 A, 1420 w - 1408 1449 14457 1449 1453 (N+H) δ 17 A, 1420 w - 130 s 1316 1313 1372 1330 (C-N) u 18 A, 1380 s - 1376 1373 1372 1380 (C-N) u 20 B ₂ 1260 s 1260 m 1268 1259 1251 1249 (C-N) u 21 B ₂ 1200 m 120 m 1207 1209 1232 1207 1208 (C-N) u 22 B ₂ 190 m 90 m 984 995 1006 983 994 (N+H) γ 23 B ₂ 190 m - 703 702 716 718 718 (N+H) γ 25 B ₁ 600 m - 661	13	B ₂	1540 w	1540 vs	1533	1526	1528	1526	1537	(N-H) б	
15 A, 1470 s - 1453 1452 1462 1453 1459 (N+H) $\bar{5}$ 16 A, 1450 w 1450 s 1449 1448 1457 1449 1453 (N+H) $\bar{5}$ 17 A, 1420 s - 1408 1409 1419 1417 1413 (N+H) $\bar{5}$ 18 A, 1380 s - 1372 1376 1373 1372 1380 (C-N) u 20 B_2 1310 s 1316 1251 1259 1251 1249 (C-N) u 21 B_2 1210 w - 1207 1209 1232 1207 1208 (C-N) u 22 B_2 1210 w - 1189 1187 1186 1192 1185 (C-N) u 23 B_2 190 s - 1189 1187 1186 1192 1185 (C-N) u 24 B_2 900 m 90 w 944 995 1006 983 994 (N+H) Y 25 B_1 800 m	14	A ₁	1490 m	-	1476	1494	1480	1477	1489	(N-H) δ	
16 A, 1450 w 1449 v 1448 1457 1449 v 1453 v (N+H) $\bar{\sigma}$ 17 A, 1420 s - 1408 1409 1419 1417 1413 (N+H) $\bar{\sigma}$ 18 A, 1380 s - 1372 1376 1373 1372 1380 (C-N) u 19 B_2 1310 s 1310 s 1316 1291 1326 1306 1302 (C-N) u 20 B_2 1260 s 1260 m 1268 1211 1233 1264 1239 (C-S) u 21 B_2 1210 w - 1207 1208 1232 1207 1208 (C-N) u 23 B_2 1190 s - 1188 1187 1186 1192 1185 (C-N) u 24 B_2 990 m 990 w 984 995 1006 983 994 (N+I) γ 25 B_1 860 m - 709 688 694 684 684 (N+I) γ 26 B_1 720 w	15	A ₁	1470 s	-	1453	1452	1462	1453	1459	(N-H) δ	
17 A, 1420s - 1408 1419 1417 1413 (N+H) δ 18 A, 1380s - 1372 1376 1373 1372 1380 (C-N) u 19 B ₂ 1310s 1310s 1316 1291 1326 1306 1302 (C-N) u 20 B ₂ 1260s 1260m 1268 1211 1233 1264 1299 (C-S) u 21 B ₂ 1210w - 1207 1208 1212 1232 1207 1208 (C-N) u 22 B ₂ 1210w - 1189 1187 1186 1192 1185 (C-N) u 24 B ₂ 990m 990w 984 995 1006 983 994 (N+H) γ 25 B ₁ 720w 720w 735 702 716 718 718 (N+H) γ 26 B ₁ 720w 720w 755 750 551 540 (N+H) γ 27 A ₂ 600w -	16	A ₁	1450 w	1450 s	1449	1448	1457	1449	1453	(N-H) δ	
18 A ₁ 1380 s - 1372 1376 1373 1372 1380 (C-N) u 19 B ₂ 1310 s 1310 s 1310 s 1316 1291 1326 1306 1302 (C-N) u 20 B ₂ 1260 s 1260 m 1256 1259 1211 1249 (C-N) u 21 B ₂ 1210 w - 1207 1209 1232 1207 1208 (C-S) u 22 B ₂ 1190 s - 1207 1209 1232 1207 1208 (C-S) u 23 B ₂ 1190 s - 1189 1187 1186 1192 1185 (C-N) u 24 B ₂ 990 m 990 w 984 995 1006 983 994 (N+H) Y 25 B ₁ 860 m - 659 857 825 856 (M+H) Y 26 B ₁ 720 w 720 w 756 560 588 602 594 594 (N+H) Y 28 A ₂ 50	17	A ₁	1420 s	-	1408	1409	1419	1417	1413	(N-H) δ	
19 B2 1310 s 1310 s 1316 s 1291 1326 1306 1302 (C-N) u 20 B2 1260 s 1260 m 1256 1258 1259 1251 1249 (C-N) u 21 B2 1240 m 1240 m 1208 1211 1233 1264 1239 (C-S) u 22 B2 1210 w - 1207 1209 1232 1207 1208 (C-S) u 23 B2 1190 s - 1189 1187 1186 1192 1185 (C-N) u 24 B2 990 m 990 w 984 995 1006 983 994 (N+H) Y 25 B1 860 m - 859 857 825 858 664 (N+H) Y 26 B1 720 w 720 w 735 702 716 718 714 (N+H) Y 28 A2 650 w - 562 560 548 557 540 (N+H) Y 30 A2 500 m -<	18	A ₁	1380 s	-	1372	1376	1373	1372	1380	(C-N) υ	
20 B ₂ 1260 s 1260 m 1256 1258 1259 1251 1249 (C-N) u 21 B ₂ 1240 m 1240 m 1208 1211 1233 1264 1239 (C-S) u 22 B ₂ 1210 w - 1207 1209 1232 1207 1208 (C-S) u 23 B ₂ 1190 s - 1189 1187 1186 1192 1185 (C-N) u 24 B ₂ 990 m 990 w 984 995 1006 983 994 (N+H) Y 25 B ₁ 720 w 735 702 716 718 718 (N+H) Y 26 B ₁ 720 w 720 w 735 702 716 718 784 (N+H) Y 28 A ₂ 690 w - 662 598 602 594 594 (N+H) Y 30 A ₁ 480 w 485 479 474 457 <td>19</td> <td>B₂</td> <td>1310 s</td> <td>1310 s</td> <td>1316</td> <td>1291</td> <td>1326</td> <td>1306</td> <td>1302</td> <td>(C-N) υ</td>	19	B ₂	1310 s	1310 s	1316	1291	1326	1306	1302	(C-N) υ	
21 B2 1240 m 1208 1211 1233 1264 1239 (C-S) u 22 B2 1210 w - 1207 1209 1232 1207 1208 (C-S) u 23 B2 1190 s - 1189 1187 1186 1192 1185 (C-N) u 24 B2 990 m 990 w 984 995 1006 983 994 (N+H) γ 25 B1 860 m - 859 857 825 858 856 (N+H) γ 26 B1 720 w 720 w 735 702 716 718 718 (N+H) γ 27 A2 690 w - 601 644 631 658 649 (N+H) γ 28 A2 650 w - 562 560 548 557 540 (N+H) γ 30 A2 560 w - 564 555 509 513 519 (N-H) γ 33 A1 480 m 489 4844 479	20	B ₂	1260 s	1260 m	1256	1258	1259	1251	1249	(C-N) υ	
22 B2 1210 w - 1207 1209 1232 1207 1208 (C-S) u 23 B2 1190 s - 1189 1187 1186 1192 1185 (C-N) u 24 B2 990 m 990 w 884 995 1006 983 994 (N+H) γ 25 B1 860 m - 859 857 825 858 856 (N+H) γ 26 B1 720 w 720 w 735 702 716 718 718 (N+H) γ 27 A2 690 w - 709 688 694 684 684 (N+H) γ 28 A2 650 w - 661 644 631 658 649 (N+H) γ 30 A2 560 w - 562 560 548 557 540 (N+H) γ 31 B2 500 m - 438 489 484 479 499 (Cd-Br) u 33 A1 480 m 480 w 49	21	B ₂	1240 m	1240 m	1208	1211	1233	1264	1239	(C-S) υ	
23 B_2 1190 s - 1189 1187 1186 1192 1185 (C-N) u 24 B_2 990 m 990 w 984 995 1006 983 994 (N+H) γ 25 B_1 860 m - 859 857 825 858 856 (N+H) γ 26 B_1 720 w 735 702 716 718 718 (N+H) γ 27 A_2 690 w - 709 688 694 684 684 (N+H) γ 28 A_2 650 w - 661 644 631 658 649 (N+H) γ 30 A_2 560 w - 562 560 548 557 540 (N+H) γ 31 B_2 510 w - 534 535 509 513 519 (Cd-Br) u 32 B_2 500 m - 431 428 418	22	B ₂	1210 w	-	1207	1209	1232	1207	1208	(C-S) υ	
24 B ₂ 990 m 990 w 984 995 1006 983 994 (N-H) γ 25 B ₁ 860 m - 859 857 825 858 856 (N-H) γ 26 B ₁ 720 w 720 w 735 702 716 718 718 (N-H) γ 27 A ₂ 690 w - 709 688 694 684 684 (N-H) γ 28 A ₂ 650 w - 661 644 631 658 649 (N-H) γ 29 A ₂ 600 w - 562 560 548 557 540 (N-H) γ 30 A ₂ 500 m - 534 535 509 513 519 (N-H) γ 31 B ₂ 500 m - 498 489 484 479 499 (Cd-Br) ν 33 A ₁ 480 m 480 m 495 479 4	23	B ₂	1190 s	-	1189	1187	1186	1192	1185	(C-N) υ	
25 B ₁ 860 m - 859 857 825 858 856 (N+H) γ 26 B ₁ 720 w 720 w 735 702 716 718 718 (N+H) γ 27 A ₂ 690 w - 709 688 694 684 684 (N+H) γ 28 A ₂ 650 w - 661 644 631 658 649 (N+H) γ 29 A ₂ 600 w - 602 598 602 594 594 (N+H) γ 30 A ₂ 560 w - 562 560 548 557 540 (N-H) γ 31 B ₂ 510 w - 534 535 509 513 519 (N-H) γ 32 B ₂ 500 m - 498 489 484 479 499 (Cd-Br) ν 33 A ₁ 480 w 495 479 474 457	24	B ₂	990 m	990 w	984	995	1006	983	994	(N-H) γ	
26 B1 720 w 735 702 716 718 718 (N+H) γ 27 A2 690 w - 709 688 694 684 684 (N+H) γ 28 A2 650 w - 661 644 631 658 649 (N+H) γ 29 A2 600 w - 662 588 602 594 594 (N+H) γ 30 A2 560 w - 562 560 548 557 540 (N+H) γ 31 B2 510 w - 534 535 509 513 519 (Cd-Br) u 33 A1 480 m 480 w 495 479 474 457 472 (Cd-Br) u 34 A1 420 w - 431 428 418 415 424 (Cd-S) u 35 A1 400 m - 419 403 408 411 402 (Cd-S) u 36 B2 390 m 390 w 389 401	25	B ₁	860 m	-	859	857	825	858	856	(N-H) γ	
27 A_2 690 w - 709 688 694 684 684 (N+1) Y 28 A_2 650 w - 661 644 631 658 649 (N+1) Y 29 A_2 600 w - 602 598 602 594 594 (N+1) Y 30 A_2 560 w - 562 560 548 557 540 (N+1) Y 31 B_2 510 w - 534 535 509 513 519 (Cd-Br) U 33 A_1 480 m 480 w 495 479 474 457 472 (Cd-Br) U 34 A_1 420 w - 431 428 418 415 424 (Cd-S) U 35 A_1 400 m - 419 403 408 411 402 (Cd-S) U 36 B_2 390 m 390 w 389 401 4055	26	В ₁	720 w	720 w	735	702	716	718	718	(N-H) γ	
28 A_2 650 w - 661 644 631 658 649 (N+H) γ 29 A_2 600 w - 602 598 602 594 594 (N+H) γ 30 A_2 560 w - 562 560 548 557 540 (N+H) γ 31 B_2 510 w - 534 535 509 513 519 (Cd-Br) U 32 B_2 500 m - 498 489 484 479 499 (Cd-Br) U 33 A_1 480 m 480 w 495 479 474 457 472 (Cd-Br) U 34 A_1 400 m - 431 428 418 415 424 (Cd-S) U 35 A_1 400 m - 431 428 418 411 402 (Cd-S) U 36 B_2 390 m 390 w 389 401 4	27	A ₂	690 w	-	709	688	694	684	684	(N-H) γ	
29 A_2 600 w - 602 598 602 594 594 (N+H) γ 30 A_2 560 w - 562 560 548 557 540 (N+H) γ 31 B_2 510 w - 534 535 509 513 519 (N-H) γ 32 B_2 500 m - 498 489 484 479 499 (Cd-Br) u 33 A_1 480 m 480 w 495 479 474 457 472 (Cd-Br) u 35 A_1 400 m - 411 402 (Cd-S) u 36 B_2 390 m 390 w 389 401 405 409 389 (C-N) δ 37 B_2 380 w 379 360 365 374 376 (C-N) δ 38 A_2 310 m 310 w 309 314 326 313 305 (C-S) δ	28	A ₂	650 W	-	661	644	631	658	649	(N-H) γ	
30 A_2 560 w - 562 560 w 543 w 557 w 540 w (N+H) γ 31 B_2 510 w - 534 w 535 w 509 w 513 w 519 w (N+H) γ 32 B_2 500 m - 498 w 489 w 484 w 479 w 499 w (Cd-Br) u 33 A_1 480 m 480 w 495 w 479 w 474 w 457 w 472 w (Cd-Br) u 34 A_1 420 w - 431 w 428 w 418 w 415 w 420 w (Cd-S) u 35 A_1 400 m - 419 w 403 w 408 w 411 w 402 w (Cd-S) u 36 B_2 390 m 390 w 389 w 401 w 405 w 409 w 389 (C-N) \delta 37 B_2 380 w 379 w 360 w 365 w 374 w 376 (C-N) δ 38 A_2 310 m 310 w 309 w <	29	A ₂	600 W	-	602	598	602	594	594	(N-H) Y	
31 B_2 510 w - 534 535 509 513 519 (N-H) γ 32 B_2 500 m - 498 489 484 479 499 (Cd-Br) u 33 A_1 480 m 480 w 495 479 474 457 472 (Cd-Br) u 34 A_1 420 w - 411 428 418 415 424 (Cd-S) u 35 A_1 400 m - 419 403 408 411 402 (Cd-S) u 36 B_2 390 m 390 w 389 401 405 409 389 (C-N) \(\bar{S}) 37 B_2 380 w 379 360 365 374 376 (C-N) \(\bar{S}) 38 A_2 360 w - 334 334 343 351 358 (C-S) \(\bar{S}) 40 A_2 310 m 310 w 309 314 326 313 305 (Cd-S) \(\bar{S}) 41 B_2 270 w <td>30</td> <td>A₂</td> <td>560 W</td> <td>-</td> <td>562</td> <td>560</td> <td>548</td> <td>557</td> <td>540</td> <td>(N-H) Y</td>	30	A ₂	560 W	-	562	560	548	557	540	(N-H) Y	
32 B2 500 m - 498 489 489 4494 479 499 (Cd-Br) U 33 A1 480 m 480 w 495 479 474 475 472 (Cd-Br) U 34 A1 420 w - 431 428 418 415 424 (Cd-S) U 35 A1 400 m - 419 403 408 411 402 (Cd-S) U 36 B2 390 m 390 w 389 401 405 409 389 (C-N) \(\bar{S}\) 37 B2 380 w 379 360 365 374 376 (C-S) \(\bar{S}\) 38 A2 360 w - 334 334 343 351 358 (C-S) \(\bar{S}\) 40 A2 290 m 290 w 304 290 295 288 302 (Cd-Br) \(\bar{S}\) 41 B2 270 w - 266 244	31	В ₂	510 W	-	534	535	509	513	519	(N-H) Y	
33 A_1 480 m 480 m 495 479 474 457 472 (CC-Br) 34 A_1 420 w - 431 428 418 415 424 (Cd-Br) 35 A_1 400 m - 419 403 408 411 402 (Cd-S) 0 36 B_2 390 m 390 w 389 401 405 409 389 (C-N) δ 37 B_2 380 w 379 360 365 374 376 (C-N) δ 38 A_2 360 w - 334 334 343 351 358 (C-S) δ 40 A_2 310 m 310 w 309 314 326 313 305 (C-S) δ 41 B_2 270 w - 266 244 248 255 262 (Cd-Br) δ 41 B_2 270 w 200 w 201 w 194 196 198 202 206 (Cd-S) δ 42 B_2 <t< td=""><td>32</td><td>B₂</td><td>500 m</td><td>-</td><td>498</td><td>489</td><td>484</td><td>479</td><td>499</td><td>(Cd-Br) U</td></t<>	32	B ₂	500 m	-	498	489	484	479	499	(Cd-Br) U	
34 A1 420 w - 431 428 418 418 418 426 (Cd-S) U 35 A1 400 m - 419 403 408 411 402 (Cd-S) U 36 B2 390 m 390 w 389 401 405 409 389 (C-N) δ 37 B2 380 w 379 360 365 374 376 (C-N) δ 38 A2 360 w - 334 334 343 351 358 (C-S) δ 39 A2 310 m 310 w 309 314 326 313 305 (C-S) δ 40 A2 290 m 290 w 304 290 295 288 302 (Cd-Br) δ 41 B2 270 w - 266 244 248 255 262 (Cd-S) δ 41 B2 220 w 220 w 229 241 246 236 228 (Cd-S) δ 43 B1 170 w - 140	33	A ₁	480 m	480 W	495	479	4/4	457	472	(Cd-Br)0	
35 A_1 400 m - 419 403 403 411 402 (CC-S) 0 36 B_2 390 m 390 w 389 401 405 409 389 (C-N) 5 37 B_2 380 w 380 w 379 360 365 374 376 (C-N) 5 38 A_2 360 w - 334 334 343 351 358 (C-S) 5 39 A_2 310 m 310 w 309 314 326 313 305 (C-S) 5 40 A_2 290 m 290 w 304 290 295 288 302 (Cd-Br) 5 41 B_2 270 w - 266 244 248 255 262 (Cd-Br) 5 42 B_2 220 w 220 w 229 241 246 236 228 (Cd-S) 5 43 B_1 170 w - 140 148 152 152 176 (C-N) γ 44 B_1 170 w	34	A ₁	420 W	-	431	428	418	415	424		
36 B_2 390 m 390 m 389 401 403 403 409 389 (C+N) 6 37 B_2 380 w 380 w 379 360 365 374 376 (C-N) δ 38 A_2 360 w - 334 334 343 351 358 (C-N) δ 39 A_2 310 m 310 w 309 314 326 313 305 (C-S) δ 40 A_2 290 m 290 w 304 290 295 288 302 (Cd-Br) δ 41 B_2 270 w - 266 244 248 255 262 (Cd-Br) δ 42 B_2 220 w 220 w 229 241 246 236 228 (Cd-S) δ 43 B_1 200 w 200 w 194 196 198 202 206 (Cd-S) δ 44 B_1 170 w - 140 148 152 152 176 (C-N) γ 45 B_1	35	A ₁	400 m	-	419	403	408	411	40Z		
37 B_2 380 w 380 w 379 300 303 314 310 310 w 334 334 343 351 358 (C+A) o 38 A_2 310 w 310 w 309 314 326 313 305 (C-S) \bar{S} 40 A_2 290 w 290 w 304 290 295 288 302 (Cd-Br) \bar{S} 41 B_2 270 w - 266 244 248 255 262 (Cd-Br) \bar{S} 42 B_2 220 w 220 w 229 241 246 236 228 (Cd-S) \bar{S} 43 B_1 200 w 200 w 194 196 198 202 206 (Cd-S) \bar{S} 44 B_1 170 w - 140 148 152 152 176 (C-N) γ 45 B_1 165 w - 138 140 142 142 158 (C-N) γ 46 B_1 140 w - 132 130 136 <	30	В ₂	390 m	390 W	389	401	405	409	389	(C-N) 0	
38 A_2 300 w - 334 334 335 331 336 (C-S) 5 39 A_2 310 w 310 w 309 314 326 313 305 (C-S) 5 40 A_2 290 w 290 w 304 290 295 288 302 (Cd-Br) 5 41 B_2 270 w - 266 244 248 255 262 (Cd-Br) 5 42 B_2 220 w 220 w 229 241 246 236 228 (Cd-S) 5 43 B_1 200 w 200 w 194 196 198 202 206 (Cd-S) 5 44 B_1 170 w - 140 148 152 152 176 (C-N) γ 45 B_1 165 w - 132 132 130 138 (C-S) γ 46 B_1 140 w - 132 132 130 128 (C-S) γ 47 B_1 130 w - 126 12	20	D ₂	360 W	360 W	224	224	242	251	259	(C S) 5	
39 A_2 310 m 310 w 309 314 320 313 305 (C4.5) c 40 A_2 290 m 290 w 304 290 295 288 302 (Cd-Br) $\overline{\delta}$ 41 B_2 270 w - 266 244 248 255 262 (Cd-Br) $\overline{\delta}$ 42 B_2 220 w 220 w 229 241 246 236 228 (Cd-S) $\overline{\delta}$ 43 B_1 200 w 200 w 194 196 198 202 206 (Cd-S) $\overline{\delta}$ 44 B_1 170 w - 140 148 152 152 176 (C-N) γ 45 B_1 165 w - 138 140 142 142 158 (C-N) γ 46 B_1 140 w - 132 130 136 138 (C-S) γ 47 B_1 130 w - 126 124 124 130 128 (C-S) γ 48 B_1 120 w	20	A2	300 W	- 210 w	200	214	343	212	205	(C-3) 0 (C-5) 5	
40 A_2 230 m 2	10	A .	200 m	200 w	309	200	205	288	303	(Cd-Br) 5	
Image: triangle interminant interm	40	- 72 B	230 m	230 W	266	230	235	200	262	(Cd-Br) δ	
H_2 <t< td=""><td>42</td><td>B</td><td>220 W</td><td>220 \04</td><td>200</td><td>2/11</td><td>240</td><td>230</td><td>202</td><td>(Cd-S) 5</td></t<>	42	B	220 W	220 \04	200	2/11	240	230	202	(Cd-S) 5	
134 134 130 136 120 120 $(Cd-S) 0$ 44 B_1 170 w - 140 148 152 152 176 $(C-N) \gamma$ 45 B_1 165 w - 138 140 142 142 158 $(C-N) \gamma$ 46 B_1 140 w - 132 130 136 138 $(C-S) \gamma$ 47 B_1 130 w - 126 124 124 130 128 $(C-S) \gamma$ 48 B_1 120 w 102 w 106 106 108 112 $(Cd-S) \gamma$ 49 B_1 110 w 110 w 80 82 80 84 82 $(Cd-Br) \gamma$ 50 B_1 100 w - 28 32 32 28 32 $(Cd-S) \gamma$ 51 B_1 90 w - 18 24 24	42	P	200 W	200 \0	101	106	109	200	220	(Cd-3) 0	
1.1 D1 1.10 1.40 1.40 1.02 1.02 1.02 1.03 (C+1) γ 45 B1 165 w - 138 140 142 142 158 (C-N) γ 46 B1 140 w - 132 132 130 136 138 (C-S) γ 47 B1 130 w - 126 124 124 130 128 (C-S) γ 48 B1 120 w 120 vw 102 106 106 108 112 (Cd-Br) γ 49 B1 110 w 110 vw 80 82 80 84 82 (Cd-Br) γ 50 B1 100 w - 28 32 32 28 38 (Cd-S) γ 51 B1 90 w - 18 24 24 22 26 (Cd-S) γ	44	B R	170 w	200 VW	140	148	152	152	176	(C=N) v	
10 10 10 100 140 142 142 142 153 (C+I) γ 46 B ₁ 140 w - 132 132 130 136 138 (C-S) γ 47 B ₁ 130 w - 126 124 124 130 128 (C-S) γ 48 B ₁ 120 w 120 w 102 106 106 108 112 (Cd-Br) γ 49 B ₁ 110 w 110 vw 80 82 80 84 82 (Cd-Br) γ 50 B ₁ 100 w - 28 32 32 28 38 (Cd-S) γ 51 B ₁ 90 w - 18 24 24 22 26 (Cd-S) γ	45	R B	165 w	_	138	140	142	142	158	(C-N) y	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	46	B R	140 w	_	132	132	130	136	138	(C-S) v	
H_1 H_2 <t< td=""><td>47</td><td>P</td><td>130 W</td><td>-</td><td>126</td><td>124</td><td>124</td><td>130</td><td>128</td><td>(C-S) y</td></t<>	47	P	130 W	-	126	124	124	130	128	(C-S) y	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	48	B R	120 w	120 \04	102	106	106	108	112	(Cd-Br) v	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	R B	110 w	110 \\	80	82	80	84	82	(Cd-Br) y	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	R B	100 w		28	32	32	28	38	(Cd-S) v	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51	R B	90.14	_	18	24	24	22	26	(Cd-S) v	
			00 W		10		- -		20		

 α –deformation, δ - In plane bending; $\gamma\text{-out}$ plane bending; τ – Twisting:

Table 2: Observed and calculated vibrational frequencies of Bis (thiourea) Cadmium Bromide (BTCB) with HF, DFT (B3LYP& B3PW91), CAM – B3LYP and LSDA with 3-21G (d, p) basis sets.

J Theor Comput Sci, an open access journal ISSN: 2376-130X

The zero point vibrational energy of the compound in different level of calculations such as HF/LSDA/B3LYP/B3PW91/CAM-B3LYP with 3-21 G(d, p) basis set is 86.85, 78.35, 80.02, 80.55 and 81.43 Kcal/ Mol, respectively. The calculated energy of HF is greater than DFT method since the assumed ground state energy in HF is greater than the true energy. Since the existence of coordinate covalent bond between organic element and metal, molecular structure belongs to multiple planes with respect to Cadmium bromide. The thiourea on both sides are somewhat tilted in order to sustain their equal distribution of charges of Br and H. Since the present compound is composed of metal atom and organic complex, the entire atoms are connected by covalent and co-ordination covalent bonds. Particularly, cadmium metal atom is connected with couple of thiourea by Vander walls bonds. The metal ions acted as a bridge for both thiourea. Normally, the metal ions make dative bond with organic atoms to form organo-metallic compound due to which the considerable amount of energy is released and make a crystal very strong.

In the experimental method, the bond lengths of C-S and C-N vibrations are 1.720 and 1.340 Å whereas in the calculation method, the corresponding bond lengths are 1.778 and 1.346 Å respectively. The internuclear distance of N5-H6=N14-H15 is 0.018 Å and this value is greater than that of N5-H7=N14-H16. This variation exists due to the attraction of Br and H atoms. Moreover, in this compound, both the amino groups are coupled with carbon atom in symmetrical manner. However, the bond distance of C-N is differed by 0.017 Å. This difference occurs between them is due to the attraction of H by Br. There exists a double bond between C and S atoms usually, but only one bond exists due to 2 lone pair of electrons which are transferred from the ligand (S) to the metal (Cd). The calculated bond length of Cd-S is 2.703 Å and this peculiar bond is called coordination covalent bond which has very high bond length when compared with others. It is concluded that from these calculated parameters, this organo-metallic compound is very strong due to the existence of complex bonds.

The coordination covalent bond is an anisotropic bond which is altered at any instant due to the relative orientation of the molecules. The induction and dispersion interactions are always attractive, irrespective of the orientation of the molecules, but the electrostatic interaction between the metal and organic atoms changes sign with respect to the charges of the atom. Thus, the electrostatic force of attraction depending on the charges of the molecule has restricted the bond length which is existed between the metal and organic atoms. Such a force of attraction between metal and organic atom also affect the surrounding atoms of opposite signs. The highly electronegative bromine atoms are attracted much more by the highly positive cadmium atoms.

Mulliken charge analysis: The Mulliken charge is used to understand the charge distribution on the chemical bonding because it facilitates positive and negative regions in the molecular space, at which the protons and electrons concentrate. Thus chemically significant regions; bonds can be identified; also gives the narration of the mechanism of electrophilic and nucleophilic substitutions. Normally, the charges are distributed evenly over the molecule which leads to be neutral. Whenever the substitutions are added to the molecule, the charge distribution is completely altered with respect to the substitution. Here, the negative charges are accumulated over the N atoms in thiourea even after the cadmium bromide is added. When the highly electronegative bromine atoms are coupled with positive cadmium atom, the high degree of Br-Cd-Br dipoles are formed. The remaining C and H of the molecule have positive space. Since the addition of Cd-Br have been occurred in thiourea, the sulphur atoms become low order negative that is almost neutral. The Mulliken charges of each atom are presented in Table 3. Thus the entire charge levels of the molecule are altered on par with due to the substitution. Simultaneously, the chemical property has also changed for the same. The Mulliken charge analysis diagram is displayed in the Figure 4.

Page 4 of 12

Vibrational assignments

The BTCB molecule has 19 atoms and 51 normal vibrational modes. The molecule possesses C_{2V} point group symmetry, which shows that all vibrational modes of BTCB molecule are both infrared (IR) and Raman active. In HF and DFT calculations, the calculated vibrational frequencies were scaled by scaling factors. The different calculated vibrational modes were scaled by different scaling factors for better agreement with the experimental values. On the basis of C_{2V} symmetry, the 51 fundamental vibrations of the molecule can be distributed as

Figure 4: Mulliken charge of Bisthiourea Cadmium Bromide.

Atom	Mullikan Charges
S1	- 0.124
S2	- 0.124
C3	0.475
C4	0.475
N5	- 0.911
N8	- 0.891
N11	- 0.891
N14	- 0.911
H6	0.369
H7	0.434
Н9	0.369
H10	0.410
H12	0.369
H13	0.410
H15	0.369
H16	0.434
Cd17	0.781
Br18	- 0.522
Br19	- 0.522

Table 3: Mulliken charges HF / 3-21G (d, p) level for Bis (thiourea) Cadmium Bromide (BTCB).

Γ Vib=19A₁+7A₂+11B₁+14B₂

 A_1 and B_2 irreducible representations correspond to stretching, ring deformation and in plane bending vibrations while A_2 and B_1 correspond to ring, torsion and out of plane bending vibrations. The harmonic vibrational frequencies (unscaled and scaled) are calculated at B3LYP and B3PW91 levels using the triple split valence basis set along with the diffuse and polarization functions; 3-21 G (d, p). The observed FT-IR and FT-Raman frequencies for various modes of vibrations have been presented in Tables 2 and 4 respectively. In this, the calculated frequencies are compared with the experimental values and this work reveals the over estimation of the calculated vibrational modes due to the neglect of a harmonicity and change of state of real system Table 5. Also, these computational calculations are carried out for frequency analysis to get the spectroscopic indication of the BTCB.

Amino group vibrations: The molecule is populated with couple of thiourea which contains bi NH, groups. Generally, the amino group is a dominated ligand and make the impression strong in the vibrational pattern. As there are eight N-H bonds, eight vibrational bands of stretching modes are possible. Normally, the primary amines are recognized by strong absorption peaks in the regions of 3450-3100 cm⁻¹ and 3100-3300 cm⁻¹ due to the asymmetric and symmetric N-H stretching respectively [13,14]. Also the NH₂⁺ asymmetric and symmetric deformation wave numbers are expected to fall in the regions 1660-1610 cm⁻¹ and 1550-1485 cm⁻¹ respectively [15,16]. Also the observed N-H stretching frequencies are found at 3350, 3345, 3320, 3300, 3295, 3290, 3250 and 3245 cm⁻¹. Out of these, the first three bands are assigned to asymmetric vibrations and the rest five bands are assigned to symmetric vibrations. Apart from these assignments, the last two vibrational bands are found to be moved down from the expected region. Due to the dominating character of the NH group, all the stretching vibrations should be observed within the expected region. But this is not so in this case. This is mainly due to the presence of sulphur with chain. The presence of N-H in plane bending vibrations (scissoring) are usually observed in the region 1610-1630 cm⁻¹, rocking vibrations are assigned in the range 1100-1200 cm⁻¹ and the out of plane bending (wagging and twisting) vibrations are normally identified under the region 1150-900 cm⁻¹ [17-19]. In the present compound, the in-plane deformation vibrations are observed at 1610, 1600, 1590, 1565, 1540, 1490, 1470, 1450 and 1420 cm⁻¹. The first two bands are moved up to the higher region and it is cleared that these vibrations are favoured and not affected by the sulphur. The out of plane bending vibrations are observed at 990, 860, 720, 690, 650, 600, 560 and 510 cm⁻¹. Normally, whenever the metal atom coupled with the organic molecule, those normal vibrational modes of the same are suppressed much. The entire out of plane bending vibrations are found out of the expected region. This observation obviously shows that the N-H out of plane vibrations are hindering by metal complex vibrations. The entire out of plane vibrational modes are affected by other substitutions in the chain and this is observed from N-H vibrations.

C-N vibrations: The C-N stretching frequency is rather a tricky assignment since there exists problem in cascading of these frequencies with other vibrations [20]. According to the previous work [21], the C-N stretching vibrations were found in the region 1386-1266 cm⁻¹ for aromatic amines. In this present work, the C-N Stretching vibrations are observed at 1380, 1310, 1260 and 1190 cm⁻¹ which is making disagreement with the literature [22] due to the loading of sulphur and metal atoms with the molecule. The C-NH₂ in-plane and out-of-plane bending vibrations are appeared at 390 and 380 cm⁻¹ and 170 and 165 cm⁻¹ respectively. These two vibrations are affected much

	. .	Calculated frequency				
S. No	Observed	HF	B3LYP	B3PW91	CAM - B3LYP	LSDA
	nequency	3-21G	3-21G	3-21G	3-21G	3-21G
1	3350	3873	3641	3669	3668	3562
2	3345	3872	3641	3669	3668	3562
3	3320	3800	3540	3572	3577	3458
4	3300	3800	3540	3572	3577	3458
5	3295	3752	3514	3541	3548	3433
6	3290	3752	3514	3541	3548	3433
7	3250	3608	3185	3166	3233	2884
8	3245	3608	3185	3166	3233	2891
9	1610	1878	1734	1730	1749	1657
10	1600	1877	1733	1729	1748	1655
11	1590	1829	1690	1690	1704	1636
12	1565	1829	1689	1690	1703	1635
13	1540	1642	1558	1576	1590	1569
14	1490	1641	1557	1575	1589	1568
15	1470	1556	1424	1434	1453	1403
16	1450	1552	1420	1420	14/0	1302
17	1420	1204	1110	1118	113/	110/
10	1380	1204	1110	1117	1134	1104
10	1210	1204	1104	1105	1134	1069
19	1000	1197	1104	1105	1117	1000
20	1200	1197	1104	004	002	1000
21	1240	967	805	881	903	905
22	1210	966	864	880	901	902
23	1190	820	711	719	745	710
24	990	820	/11	/19	/45	/10
25	860	735	675	689	692	685
26	720	735	675	688	691	684
27	690	709	620	631	658	622
28	650	708	620	631	658	622
29	600	602	539	548	556	540
30	560	602	539	548	557	540
31	510	534	471	476	480	472
32	500	534	470	475	479	471
33	480	495	428	431	457	425
34	420	494	428	431	457	424
35	400	419	403	408	411	402
36	390	417	401	405	409	402
37	380	218	212	215	220	235
38	360	192	197	202	207	224
39	310	178	185	192	196	218
40	290	175	171	174	180	189
41	270	133	144	146	150	164
42	220	132	142	145	148	163
43	200	97	98	99	101	103
44	170	70	74	76	76	88
45	165	69	70	71	71	79
46	140	66	66	65	68	69
47	130	63	62	62	65	64
48	120	51	53	53	54	56
49	110	40	41	40	42	41
50	100	14	16	16	14	19
51	90	9	12	12	11	13

Table 4: Calculated unscaled frequencies of Bis (thiourea) Cadmium Bromide (BTCB) computed at HF, DFT (B3LYP& B3PW91), CAM - B3LYP & LSDA with 3-21G (d, p) basis sets.

Page 5 of 12

Energy levels	Energy in eV
H+8	6.903
H+7	6.684
H+6	6.575
H+5	6.258
H+4	6.147
H+3	6.027
H+2	5.971
H+1	5.838
Н	5.751
L	1.734
L-1	1.583
L-2	0.858
L-3	0.446
L-4	0.036
L-5	0.121
L-6	0.420
L-7	0.931
L-8	1.033
L-9	1.414
L-10	1.449

 Table 5: Frontier molecular orbitals with energy levels of Bis (thiourea) Cadmium Bromide (BTCB).

by other vibrations which make disagreement with literature values [23,24]. From these vibrations, it is observed that, the entire vibrations are altered with respect to the metal vibrations, even though the atom is bonded coordinate covalently. So this view ensures that, the metal is strongly bonded with thiourea and the crystal property of the thiourea is enriched by the addition of metal.

C-S vibrations: The rope connection of thio-cyanate complex is linked through the nitrogen atom or the sulphur atom. This bonding can be easily identified intensively by C-S stretching vibration which appeared in the region 730-690 cm⁻¹ [25-27]. In this present case, the C-S stretching vibrations are identified at 1240 cm⁻¹ (medium intensity) and 1210 cm⁻¹ (weak intensity) in IR spectrum. The observed bands are in agreement with the expected range and literature [28]. Usually, the C-S in-plane bending vibrations are observed in the region of 440-410 cm⁻¹ [28]. In this metal organic compound, the in-plane bending vibrations are found at 360 and 310 cm⁻¹ and the out-of-plane bending vibrations are found at 140 and 130 cm⁻¹. These vibrational bands are pulled down to the lower region in the expected range and are due to the Vander Waals coupling of Cd ion.

Cd-Br and Cd-S vibrations: The BTCB molecule is a metalorganic crystal compound which comprises Cd metal ion linked with bromine atoms by forming coordinate covalent bond. Normally, in cadmium metal complex, the Cd-Br stretching is very important and is usually observed in the region 315-120 cm⁻¹ [29]. In this compound, the coordinate covalent bond stretching vibrations are identified at 500 and 480 cm⁻¹. The Cd-Br in-plane bending vibrational peaks are appeared at 290 and 270 cm⁻¹ and out-of-plane bending vibrational peaks are appeared at 120 and 110 cm⁻¹. It is concluded that, the Cd-Br vibrations are elevated to higher region. This observation clearly shows that the metal-organic inter nuclear distances are made up of coordinate covalent bond and are weak. Usually, these vibrations will not be affected in order to emphasize its uniqueness character.

In BTCB molecule, the organic compound bisthiourea is directly connected through sulphur atom with metal bromide by forming coordinate covalent bond as S-Cd-S. Due to the large force constants and strong covalent bonds, generally, the Cd-S vibrations are pushed to the higher region by organic vibrations. The Cd-S bond is made up of coordinate covalent bond which is a very a weak bond and its vibrations fallback to the Cd-Br vibrations. In this present case, the Cd-S stretching vibrations are observed at 420 and 400 cm⁻¹. The corresponding in-plane bending vibrations are found at 220 and 200 cm⁻¹ and out-of-plane bending vibrations are observed at 100 and 90 cm⁻¹. The entire vibrations of Cd-S are observed in the lower region of the IR spectrum. This observation shows the weak attraction of the bond between the metal and organic compound. Although the bond observed in the present molecule is weak, its chemical properties are good and the present molecule possesses piezoelectric effect.

Page 6 of 12

Frontier molecular analysis

The probable transitions in electronic-vibrational energy levels of frontier molecular orbitals are used to identify the electro-optical properties of the organic compounds. The overlapping of molecular orbitals in bonding and antibonding is used in making the stabilization of orbital [30]. In molecular interaction, there are two important orbitals that involved in interacting with each other. They are HOMO and LUMO. HOMO is the highest energy occupied molecular orbital that represents the ability to donate an electron. LUMO is the lowest energy unoccupied molecular orbital that represents the ability to accept an electron. These orbitals are also called the frontier orbitals. The interaction between them is much stable and is called filled empty interaction. During the interaction, the electron density is generally occupied in the region between two nuclei. The energy of in-phase interaction is greater than the out-of-phase interaction and forms bonding and antibonding molecular orbital.

The 3D view of frontier orbitals in gas is shown in Figure 5. In the figure, the HOMO is mainly localized over the cadmium, Br, N atoms and C-S group in which the two sigma bond interactions are observed over the C-S of thiourea and one delta bond interaction found over cadmium bromide. The N and Br atoms of the molecule are connected by S orbital lobes. However, LUMO is characterized by a charge distribution that connects the cadmium-bromide atoms and C-S bonds in which there are two sigma and one delta bond

Figure 5: Frontier molecular orbital lobe formation.

interactions are identified. From this observation, it is inferred that, the in-phase and out-of-phase interactions are present in HOMO and LUMO respectively. The HOMO \rightarrow LUMO transition implies that an electron density is transferred between cadmium bromide and thiourea separately. Thus, the obtained transitions in the electron clouds of thiourea and metal complex ensure the occurrence of incorporation of physical and chemical properties. The kubo gap energy of the present material is 4.02 eV, which shows moderate electrical activity and effective optical activity.

NMR analysis

Usually, the NMR signals of the compounds explain the chemical environment of the carbons. In this case, the carbons are situated in different environment and proportionately, the chemical properties are obtained alternatively. The chemical shifts of the compound are reported in ppm relative to TMS for ¹H and ¹³C NMR spectra and are presented in Table 6.

In the present compound, the metallo-organic compound has been taken for the study in which the molecule contains two carbons along with two amine groups. The 13 C NMR chemical shift of such two carbons is greater than 100 ppm, as in the expected regions.

In this case, the chemical shift of C3 is 166.03 ppm and that of C4 is 168.92 ppm. Since both the carbons C3 and C4 have similar groups, the chemical shift is same for both. Due to the migration of double bond from C-S to C-N, the chemical shift of both carbons is very high. The chemical shift of Br (2845.51) is finite and apparently high due to the random breaking of proton shield by the fusing of coordinate covalent bond with organic molecules. The chemical shift of H6, H7, H9, H10, H12, H13, H15 and H16 are calculated as 1.86, 2.32, 1.40, 1.60, 1.34, 1.68, 1.86 and 2.15 ppm respectively. From these result, it is observed that, the chemical shift of H7 and H16 are higher than the rest of other hydrogen atoms in the chain. This is purely due to the extended influence on hydrogen atom by nearby bromine atoms. Hence it is concluded that the chemical property of the metal is directly coupled with organic molecules and this shows that the present metal complex molecule have an additional chemical property.

Optical property analysis

The UV and visible spectrum of the compound in gas and different solvents (DMSO, chloroform and CCl₄) are calculated at B3LYP/3-21 G (d, p) level using the TD-DFT approach. The calculated excitation energies, oscillator strength (*f*), wavelength (λ) and spectral assignments are given in Table 7. The major contributions of the transitions are assigned according to the result of SWizard program [31].

According to TD-DFT calculations, the overall transitions belong to quartz UV region. In gas phase, the strong transition is observed at 654 nm and its oscillator strength is f=0.0061 with energy gap of 1.89 eV. Also in this phase, two more strong transitions are observed at 562 and 557 nm and their corresponding oscillator strengths are f= 0.0037 and 0.0046 with energy gap of 2.20 and 2.22 eV. These transitions are indicated as $n \rightarrow \sigma^*$ which belongs to the visible region. In this, the band is designated as R-band (German, Radikalartig) which is attributed to the above said transition of chain of chromophoric groups, such as Cadmium bromide group.

From TD-DFT calculations, the following features are inferred. Their molar absorptivities are low. They transferred from hypsochromic to bathochromic shift. In this case, the solvent effect is inactive. The simulated UV-Visible spectra in gas and solvent phase are shown in Figure 6.

	According to TMS B3LYP/ 6-311+G (2d, p) (ppm)						
Atom position	Gas	DMSO	Chloroform	CCI4			
S1	187.89	256.32	240.74	221.88			
S2	185.23	250.47	235.07	217.02			
C3	166.03	175.80	173.48	170.91			
C4	168.92	177.51	175.36	173.06			
N5	94.17	93.89	94.49	94.59			
N8	84.07	89.92	88.52	86.90			
N11	85.31	91.17	89.70	88.08			
N14	92.34	93.10	93.39	93.21			
H6	1.86	2.68	2.47	2.25			
H7	2.32	2.48	2.43	2.39			
H9	1.40	2.40	2.14	1.86			
H10	1.60	2.21	2.06	1.89			
H12	1.34	2.40	2.11	1.81			
H13	1.68	2.25	2.12	1.97			
H15	1.86	2.67	2.45	2.23			
H16	2.15	2.47	2.41	2.33			
Cd17	3759.86	3807.27	3788.83	3776			
Br18	2845.51	2885.67	2878.86	2870.03			
Br19	2840.04	2945.81	2927.03	2903.36			

 Table 6: Calculated ¹H and ¹³C NMR chemical shifts of Bis (thiourea) Cadmium Bromide (BTCB).

λ (nm)	E (eV)	(f)	Major contribution	Assignment	Region	Bands
Gas						
654.03	1.8957	0.0061	H→L	n→σ*	Visible	P-band
562.82	2.2029	0.0037	H→L	n→π*	Visible	(German,
557.12	2.2254	0.0046	H→L	n→π*	Visible	radikalartig)
DMSO						
426.60	2.9064	0.0084	H→L	n→π*	Visible	R-band
393.90	3.1476	0.0045	H→L	n→π*	UV	(German,
380.92	3.2549	0.0055	H→L	n→π*	UV	radikalartig)
Chlorofor	m					
472.61	2.6234	0.0082	H→L	n→π*	Visible	R-band
439.56	2.8206	0.0032	H→L	n→π*	Visible	(German,
401.88	3.0851	0.0044	H→L	n→π*	Visible	radikalartig)
CCI₄						
528.11	2.3477	0.0082	H→L	n→π*	Visible	R-band
493.37	2.5130	0.0033	H→L	n→π*	Visible	(German,
445.78	2.7813	0.0053	H→L	n→π*	Visible	radikalartig)

Table 7: Theoretical electronic absorption spectra of Bis (thiourea) Cadmium Bromide (BTCB) (absorption wavelength λ (nm), excitation energies E (eV) and oscillator strengths (*f*)) using TD-DFT/B3LYP/3-21G (d, p) method.

In the case of DMSO solvent, the calculated absorption spectrum indicates that, the maximum absorption wavelength corresponds to the electronic transition and it undergoes from the HOMO+1 to LUMO-1 with maximum contribution. The Frontier molecular orbital diagram is presented in the Figure 7. Here, the chromophores are cadmium bromide group, the crystal properties are increased in the present compound. In the case of DMSO solvent, strong transitions are observed at 426, 393 and 380 nm and their corresponding oscillator strengths are f=0.0084, 0.0045 and 0.0055 with maximum energy gap 3.25 eV. They are denoted as $n \rightarrow \pi^*$ transition and belongs to the visible region. One of the electronic transitions is observed at IR region. Hence from gas to solvent, the electronic transitions retained at the visible

Page 7 of 12

Page 8 of 12

region. This observation clearly indicates that, the present molecule has visible active and it has very high optical properties. Moreover, the optical band gap is calculated as 3.25 eV and this view clearly ensure that the present compound BTCB possess LO as well as NLO properties.

The chemical hardness and potential, electro negativity and Electrophilicity index are calculated and their values are shown in Table 8. The chemical hardness is a property which has good chemical stability. For the present compound BTCB, the chemical hardness is calculated as 2.00 and so it has high chemical stability. The chemical stability and metal character of the compound is enhanced by substituting the Cd-Br group.

Also, the electro negativity of the compound is calculated as

3.74 and this property shows that the chemical bonds in the present molecule will be changed from covalent to ionic. The bonding nature of the present compound is rehabilitated to rich ionic property and this is due to the addition of Cd atom.

Electrophilicity index is a factor which is used to measure the energy lowering due to maximal electron flow between donor [HOMO] and acceptor [LUMO]. From the Table 8, it is found that the Electrophilicity index is 3.48 which is high and this value ensures that the strong energy transformation is taking place between HOMO+1 and LUMO-1. One more important electronic property of the molecule is its dipole moment. Whenever the molecules possess large dipole moment, the intermolecular interactions are very strong. The dipole moment value

Page 9 of 12

Parameters	TD-DFT/B3LYP/3-21G
E _{total} (Hartree)	-11643.95
E _{HOMO} (eV)	5.7513
E _{LUMO} (eV)	1.7341
$\Delta E_{HOMO-LUMO gap}$ (eV)	4.0172
E _{HOMO-1} (eV)	0.0874
E _{LUMO+1} (eV)	0.1510
ΔE _{HOMO-1-LUMO+1 gap} (eV)	0.0636
Chemical hardness (η)	2.0086
Electronegativity (x)	3.7427
Chemical potential (µ)	2.0086
Chemical softness(S)	0.2489
Electrophilicity index (ω)	3.4869
Dipole moment	1.9775

 Table 8: Calculated energies values, chemical hardness, electro negativity, Chemical potential, Electrophilicity index of Bisthiourea Cadmium Bromide (BTCB).

for the present compound BTCB is calculated as 1.97 Debye. This value is temperate due to the presence of coordinate covalent bond. Hence, the present molecule possesses strong intermolecular interactions.

Molecular Electrostatic Potential (MEP) analysis

The molecular electrostatic potentials have been used for interpreting and predicting the reactive behaviour of a wide variety of chemical systems in both electrophilic and nucleophilic reactions, the study of biological recognition processes and hydrogen bonding interactions [32,33]. Molecular electrostatic potential (MEP) at a point around a molecule gives an indication of the net electrostatic effect produced at that point by the total charge distribution (electron+nuclei) of the molecule and correlates with dipole moments, electro negatively, partial charges and chemical activity of the molecules. It provides a visual method to understand the relative polarity of the molecule. An electron density iso-surface mapped with electrostatic potential surface depicts the size, shape, charge density and site of chemical reactivity of the molecules. The different values of the electrostatic potential at the surface are represented by different colours; red represents regions of most negative electrostatic potential, blue represents regions of zero potential. Potential increases in the order of red<orange<yellow<green
blue. Molecular electrostatic potential view is mapped up at the level of B3LYP/3-21G (d, p) theory with optimized geometry. The colour code of these maps is in the range between -7.86 a.u. (deepest red) to 7.86 a.u. (deepest blue) in compound. The positive (blue) regions of MEP are related to electrophilic reactivity and the negative (green) regions to nucleophilic reactivity as shown in Figure 8.

From the MEP map of the present compound, the negative regions are mainly localized on cadmium bromide and sulphur atoms. Due to the presence of maximum positive region on the H of NH₂ groups, there exists the possibility of nucleophilic attack in the region. The above calculated results inferred that the metal atoms coupled strongly in the position of organic lattice region.

Polarizability and first order hyperpolarizability calculations

Using DFT-B3LYP method and 3-21 G (d, p) basis set, based on the finite-field approach, NLO properties, binding properties, the polarizabilities and first order hyperpolarizabilities of the title molecule are calculated. These parameters are used to find the relationships between the structures of the molecule.

The mean polarizability (α), anisotropy of polarizability ($\Delta \alpha$) and the average value of the first hyperpolarizability $\langle \beta \rangle$ can be calculated using the following equations.

$$\begin{aligned} \alpha_{tot} &= \frac{1}{3} (\alpha_{XX} + \alpha_{yy} + \alpha_{ZZ}) \\ \Delta \alpha &= \frac{1}{\sqrt{2}} [(\alpha_{XX} - \alpha_{XX})^2 + (\alpha_{yy} - \alpha_{zz})^2 + (\alpha_{zz} - \alpha_{XX})^2 + 6\alpha_{xz}^2 + 6\alpha_{yy}^2 + 6\alpha_{yz}^2]^{\frac{1}{2}} \\ <\beta &>= [(\beta_{xxx} + \beta_{xyy} + \beta_{xzz})^2 + (\beta_{yyy} + \beta_{yzz} + \beta_{yxx})^2 + (\beta_{zzz} + \beta_{zxx} + \beta_{zyy})^2]^{\frac{1}{2}} \end{aligned}$$

where α_{xx} , α_{xy} , α_{yy} , α_{xz} , α_{yz} , α_{zz} and β_{xxx} , β_{xxy} , β_{yyy} , β_{yxy} , β_{yxz} , β_{yyz} , β_{yyz} , β_{yzz} , β_{zzz} are the Polarizability and hyperpolarizability tensors. These are obtained from the output file of Polarizability and hyperpolarizability calculations. The values α and β of Gaussian output are in atomic units. They have been converted into electronic units.

For ' α ', 1 a.u.=0.1482 × 10⁻²⁴ esu,

For ' β ', 1 a.u.=8.6393 × 10⁻³³ esu

A molecule whose dipole moment, molecular polarizability and first hyperpolarizability values are high will have high active NLO properties.

The first hyperpolarizability and their components β_x , β_y and β_z of the present molecule along with related properties such as dipole

Figure 8: MEP map Diagram with isosurface of BTCB.

moment, average polarizability, anisotropy of polarizability are given in Table 9. In this, the value of dipole moment can be calculated as 4.33 Debye. The dipole moment in the component of μ_z is observed as 4.33 D and this value is high. The lowest value of the dipole moment of the molecule compound is μ_{ν} component and it is calculated as-0.0089 D. The polarization in different coordinate in the material tuned the optical energy that enters. The calculated value of α =153.47 × 10⁻²⁴ esu and $\Delta \alpha = 115.41 \times 10^{-24}$ esu. In the present molecule, the Polarizability is found to be large in amount. This high value of Polarizability shows that the present molecule is rich in NLO property. So the present metallo-organic compound is clearly optically active. The magnitude of the molecular hyperpolarizability β , is one of the important key factors in a NLO system. Because, hyperpolarizability of a system induces optical modulation inside the material and it also stimulating second order harmonic generation in the lattice site. Using (B3LYP/3-21G(d, p)) method, first hyperpolarizability value is calculated as β =-138.83 × 10⁻³⁰ esu. The high value of hyperpolarizability of the title compound emphasize the generation of the second order harmonic generation with more amplitude. So, the present compound is able to prepare the NLO crystals for enriched electronic applications.

Thermodynamic properties analysis

Thermo dynamic properties provide the necessary information regarding the chemical reactivity. Moreover it is used to discuss the existence and alternation of thermodynamic parameters of the present compound since the molecule is a metal-organic substance. The values of some thermodynamic parameters such as standard heat capacities $(C_{p,m}^0)$, standard entropies (S_m^0) and standard enthalpy changes (ΔH^0m) of title molecule by B3LYP/3-21 G (d, p) method are listed in Table 10. On the basis of vibrational analysis, these values were obtained from the theoretical harmonic frequencies. From Table 10, it can be observed that these thermodynamic functions are increased with temperature ranging from 100 to 1000 K due to the fact that the molecular vibrational intensities increase with temperature. The correlation graph between heat capacities, entropies, enthalpy changes and temperatures were shown in Figure 9.

From this observation, it is clear that, the dissociation of atoms related to the temperature is increased up to 1000 K and the molecule has positive entropy-coefficient. In the case of thermodynamical analysis of the molecule, the enthalpy of a system due to the production of metal ion and organic interactions is found to be increased with

Parameter	LSDA 3-21G (d, p) (a.u.)	HF 3-21G (d, p) (a.u.)	Parameter	LSDA 3-21G (d, p) (a.u.)	HF 3-21G (d, p) (a.u.)
α _{xx}	-42.9340	-25.6242	β _{xxx}	0.0349	0.1100
α _{xy}	14.7379	22.9900	β _{xxy}	-0.0424	-0.1562
α _{vv}	-136.9602	-139.8447	β _{xyy}	0.0022	-0.0581
α _{xz}	-0.0057	0.0109	β	0.0047	-0.0409
α _{vz}	0.0025	-0.0081	β _{xxz}	-55.9116	59.7263
α _{zz}	-128.8208	-138.6108	β _{xyz}	24.9887	27.4902
α _{tot}	183.312	153.476	β _{yyz}	-2.6321	10.8741
Δα	283.314	115.416	β _{xzz}	-0.0132	0.0178
μ _x	0.0004	0.0021	β _{vzz}	-0.0041	0.0413
μ	-0.0029	-0.0089	β _{zzz}	-67.2794	-76.2617
μ _z	-1.9775	4.3309	β _{tot}	-2874.4497	-138.8311
μ	1.9775	4.3309			

Table 9: The dipole moments μ (D), the polarizability α (a.u.), the average polarizability α_{o} (esu), the anisotropy of the polarizability $\Delta \alpha$ (esu), and the first hyperpolarizability β (esu) of Bis (thiourea) Cadmium Bromide (BTCB) computed at HF & LSDA with 3-21G (d, p) basis sets.

Т(К)	$C_{p,m}^0$ (cal mol ⁻¹ K ⁻¹)	S_m^0 (cal mol ⁻¹ K ⁻¹)	ΔH_m^0 (kcal mol ⁻¹)	Observed Peak Endothermic signal
100.00	404.94	133.84	9.12	-
200.00	515.37	189.18	25.37	199.08
298.15	599.21	231.74	46.12	247.66
300.00	600.64	232.44	46.55	-
400.00	672.28	265.82	71.53	-
500.00	734.53	292.01	99.47	-
600.00	789.68	312.88	129.76	-
700.00	839.23	329.92	161.92	-
800.00	884.25	344.20	195.65	-
900.00	925.51	356.40	230.70	-
1000.00	963.62	366.95	266.87	-

Table 10: Thermodynamic parameters at different temperatures at the B3LYP/ 3-21G (d, p) level for Bis (thiourea) Cadmium Bromide (BTCB).

consecutive saturation between the successive temperatures (e.g., 300 K-400 K). At low temperature, it is found that, the specific heat capacity of the present compound falls down rapidly and obeys the Debye T^3 law.

TGA/DTA analysis

The Thermo gravimetric analysis and differential thermal analysis for BTCB have been performed at a heating rate of 10°C/ min in nitrogen and are reported in Figure 10. In the analytical graph, there are two endothermic peaks which are observed at 199.08°C and 247.66°C. The peaks are observed due to the liberation of bromide and cadmium atoms from the crystal which are due to the weak coordination covalent interaction with thiourea. The formation of the metal complex with thiourea in the inner coordination sphere indicates greater thermal stability of the crystal [34]. The TGA analysis curves show that the occurring of weight loss which is about 81.01% in the temperature range 178-602°C and this is due to the detachment of metal bromide.

Page 10 of 12

Natural Bond Orbital (NBO) analysis

Using DFT/B3LYP level, the Natural Bond Orbital (NBO) calculations are performed in order to understand various second order interactions between the filled orbital of base system and vacant orbital of ligand system and vice versa, which is a measure of the intermolecular delocalization or hyper-conjugation. The NBO investigation facilitates the most accurate possible natural Lewis structure with the orientation of electron density. The useful aspect of the NBO method is that it gives information about interactions of both filled and virtual orbital interactions. In this case, the second-order Fock-matrix is carried out to evaluate the donor-acceptor interactions in the NBO basis. For each donor (i) and acceptor (j), the stabilization energy [E(2)] associated with the delocalization i \rightarrow j is determined as

$$E(2) = \Delta E_{ij} = q_i \frac{F(i,j)^2}{\varepsilon_i - \varepsilon_j}$$

where q is the donor orbital occupancy; ε_i , and ε_i are the diagonal elements (orbital energies) and F (i, j) is the off-diagonal NBO Fock-matrix clement. In NBO analysis, large value of E(2) shows the intensive interaction between electron-donors and electronacceptors and greater the extent of conjugation of the whole system, the possible intensive interactions are given in Table 11. The secondorder perturbation theory analysis of Fock-matrix in NBO basis shows strong intra-molecular hyper-conjugative interactions of $\boldsymbol{\sigma}$ and π electrons. The intra molecular hyper-conjugative interactions are formed by the orbital overlap between the thiourea segments and metal-bromide. Though the metal bromide is connected symmetrically with thiourea by coordinate covalent bond, the strong intra-molecular hyper-conjugative interaction is taking place between the lone pair of S1 and σ of Cd17-Br18 that weakens the respective bonds leading to the stabilization of 6.07 kJ mol⁻¹. The another intra molecular hyperconjugative interaction is formed by the orbitals of S2-C4 and Cd17-Br (18 and 19) overlap between thiourea and cadmium atom and bond orbital by spending 6.05 kJ mol⁻¹ which results in ICT causing stabilization of metal organic system. Simultaneously, the interaction is taking place between S2-C4 and N11-H (12 and 13) by spending 3.30 kJ mol⁻¹. This view shows the mutual coupling of thiourea and Cd in left moiety. The same amount of energy has been spent to form the interaction between C-S and Cd in right moiety of the total system. Thus, a strong intra molecular hyper-conjugative interaction has occurred between metal atom and thiourea. From these interactions, it is notable that, in the case of Cd-Br, the electron density move towards Br from Cd by making it positive. In the case of C-S and N-H,

Donor (i)	Type of bond	Occupancy	Acceptor (j)	Type of bond	E(2) kcal/ mol	E(j) - E(i) a.u.	F(i, j) a.u.
S1	σ	1.999	Cd17	σ*	20.58	88.22	0.159
S1	σ	1.999	Cd17-Br18	σ	6.07	7.70	0.04
S1	σ	1.999	Cd17-Br19	σ*	5.44	5.88	0.020
S1	σ	1.999	C3-N14	σ	23.63	0.21	0.067
S1-C3	σ	1.977	N8	σ*	1.15	2.14	0.045
S1-C3	σ	1.977	N14	σ	1.16	2.16	0.045
S1-C3	σ	1.977	N8-H9	σ*	3.29	1.01	0.052
S1-C3	σ	1.977	N14-H15	σ	3.24	1.02	0.051
S1-C3	σ	1.977	Cd17-Br18	σ*	0.09	0.73	0.007
S1-C3	σ	1.977	Cd17	σ	1.84	0.71	0.034
S2	σ	1.999	C4-N5	σ*	23.63	0.21	0.066
S2	σ	1.999	Cd17	σ	20.57	0.32	0.073
S2	σ	1.999	Cd17-Br18	σ*	5.46	0.34	0.040
S2	σ	1.999	Cd17-Br19	σ	6.05	0.34	0.042
S2-C4	σ	1.977	Cd17	σ*	0.73	0.71	0.022
S2-C4	σ	1.977	N5-H6	σ	3.24	1.02	0.051
S2-C4	σ	1.977	N11-H12	σ*	3.30	1.01	0.052
C3-N14	π	0.498	C3	π	0.55	1.06	0.043
C3-N8	σ	1.994	N8-H9	σ⁺	0.60	1.26	0.025
C3-N14	π	1.996	C3-N14	π	4.79	0.34	0.041
C4	σ	1.999	Cd17	σ*	0.05	10.20	0.022
C4-N5	π	1.996	Cd17	π	0.37	0.44	0.012
C4-N5	π	1.996	C4-N5	π*	7.76	0.48	0.103
C4-N11	σ	1.994	Cd17	σ	0.15	0.96	0.011
N5-H6	σ	1.985	S2-C4	σ⁺	4.45	0.86	0.055
N5-H7	σ	1.986	C4-N11	σ	4.11	1.09	0.060
N5-H7	σ	1.986	Cd17	σ*	0.54	0.73	0.019
N5-H7	σ	1.986	Cd17-Br18	σ	0.22	0.75	0.012
N5-H7	σ	1.986	Cd17-Br19	σ*	0.07	0.75	0.007
N8	σ	1.998	C3-N14	σ	75.42	0.23	0.123
N8-H9	σ	1.988	C3	σ*	2.89	1.41	0.057
N8-H10	σ	1.990	C3	σ	2.60	1.58	0.057
N11	σ	1.998	C4-N5	σ*	75.89	0.23	0.123
N11-H 13	σ	1.990	C 4-N 5	σ*	3.72	1.12	0.058
N11-H13	σ	1.990	Cd17	σ*	0.05	0.75	0.006
N14	σ	1.998	C3	σ*	5.87	14.81	0.264
N14-H15	σ	1.985	C3	σ*	2.49	1.40	0.053
N14-H16	σ	1.986	C3	σ*	1.48	1.38	0.040
N14-H16	σ	1.986	Cd17-Br18	σ*	0.07	0.75	0.007
N14-H16	σ	1.986	Cd17-Br19	σ*	0.22	0.75	0.012
Cd17-Br18	σ	1.970	H16	σ*	0.06	1.34	0.008
Cd17-Br18	σ	1.970	S1-C3	σ*	0.05	0.60	0.005
Cd17-Br19	σ	1.970	N14	σ*	0.05	1.93	0.009
Cd17-Br19	σ	1.970	H16	σ*	0.34	1.34	0.019
Cd17-Br19	σ	1.970	N14-H16	σ*	4.39	0.79	0.053
Br18	σ	2.000	N5-H7	σ*	20.03	0.58	0.097
Br19	σ	2.000	N14-H16	σ	20.00	0.58	0.097
Cd17	σ	1.999	Cd17-Br18	σ*	19.82	0.02	0.042
Cd17	σ	1.999	Cd17-Br19	σ	19.93	0.02	0.042

Page 11 of 12

Table 11: Second order perturbation theory analysis of Fock matrix in NBO basis corresponding to the intra-molecular bonds of the Bis (thiourea) Cadmium Bromide (BTCB).

the electron clouds are pulled by C and N by leaving S neutral. The increased electron density at the Br and N atoms leads to the elongation of respective bond length and a lowering of the corresponding stretching modes. The electron density (ED) is transferred from the n(Br) to the anti-bonding of σ^* and π^* orbital of the BTCB explaining

J Theor Comput Sci, an open access journal ISSN: 2376-130X

both the elongation and the red shift. This view is strongly validated by Mulliken charge analysis.

Conclusions

FT-IR, FT-Raman, UV, NMR and quantum chemical calculation studies have been performed on Bis Thiourea Cadmium Bromide (BTCB) to identify its structural and spectroscopic properties. A complete vibrational analysis of BTCB was performed with HF and DFT method using 3-21G (d, p) basis set. From the UV-Visible spectra, it is monitored that, the entire electronic transitions shifted bathochromically due to the substitutional effect. From the Mulliken charge analysis, the entire charge levels of the molecule are altered on par with due to the substitution. The electrical, optical and bio molecular properties are profoundly investigated using frontier molecular orbital. From NMR analysis, it is concluded that the chemical property of the metal is directly coupled with organic molecules and this shows that the present metal complex molecule have an additional chemical property. The MEP map is performed and from this, the change of the chemical properties of the compound is also discussed. The TGA/DTA curves recorded for the crystal confirmed its thermal stability. The correlations between the statistical thermodynamics and temperature are also obtained. It is seen that the heat capacities, entropies and enthalpies increase with the increasing temperature owing to the intensities of the molecular vibrations increase with increasing temperature. Furthermore, the average Polarizability, the first order hyperpolarizability and total dipole moment of title molecule have been calculated and the results are discussed. These results indicate that the title compound is a good candidate of nonlinear optical materials. In NBO analysis, both filled and virtual orbital interactions are discussed.

References

- Lewis RJ (1993) Hawley's Condensed Chemical Dictionary, 12th edn, New York, NY: Van Nostrand Rheinhold Co., 860.
- Hartley D, Kidd H (1983) The Agrochemicals Handbook. Old Woking, Surrey, United Kingdom: Royal Society of Chemistry/Unwin Brothers Ltd.
- Gerhartz W (1985) Ullmann's Encyclopedia of Industrial Chemistry. 5th edn: Deerfield Beach, FL: VCH Publishers, 21.
- Marchewka MK, Pietraszko A (2008) Crystal structure and vibrational spectra of piperazinium bis(4-hydroxybenzenesulphonate) molecular-ionic crystal. Spectrochim Acta A Mol Biomol Spectrosc 69: 312-318.
- Ivan SL, Gustavo ES (2008) The screened hybrid density functional study of metallic thorium carbide. Chemical Physics Letters 460: 137-140.
- Pejov L, Ristova M, Soptrajanov B (2011) Quantum chemical study of p-toluenesulfonic acid, p-toluenesulfonate anion and the water-ptoluenesulfonic acid complex. Comparison with experimental spectroscopic data. Spectrochim Acta A Mol Biomol Spectrosc 79: 27-34.
- 7. Frisch MJ (2009) Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT.
- Zhengyu Z, Dongmei D (2000) Structural studies on Cu(N,N-dialkyldiamine)2X2 complexes: X-ray structure of bis(N-isopropyl-1,2-ethanediamine) copper(II) tetrafluroborate. Journal of Molecular Structure (Theochem) 516: 247-252.
- Zhengyu Z, Aiping F, Dongmei D (2000) Studies on density functional theory for the electron-transfer reaction mechanism between M-C_eH_e and M⁺-C_eH_e complexes in the gas phase. Journal of Quantum Chemistry 78: 186-189.
- 10. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behaviour. Phys Rev A 38: 3098-3100.
- Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlationenergy formula into a functional of the electron density. Phys Rev B Condens Matter 37: 785-789.
- Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics 98: 5648-5652.

- 13. Bellamy LJ (1980) The Infrared Spectra of Complex Molecules, Vol. 2, Chapman and Hall, London.
- 14. Karabacak M, Postalcilar E, Cinar M (2012) Determination of structural and vibrational spectroscopic properties of 2-, 3-, 4-nitrobenzenesulfonamide using FT-IR and FT-Raman experimental techniques and DFT quantum chemical calculations. Spectrochim Acta A Mol Biomol Spectrosc 85: 261-270.
- 15. Silverstein RM, Webster FX (1998) Spectrometric Identification of Organic Compounds, 6th edn. Wiley, New York.
- Pandiarajan S, Umadevi M, Rajaram RK, Ramakrishnan V (2005) Infrared and Raman spectroscopic studies of I-valine I-valinium perchlorate monohydrate. Spectrochim Acta A Mol Biomol Spectrosc 62: 630-636.
- During JR, Bergana MM, Phan HV (1991) Raman and infrared spectra, conformational stability, barriers to internal rotation, ab initio calculations and vibrational assignment of dichloroacetyl fluoride. Journal of Raman Spectroscopy 22: 141-154.
- Varsanyi G (1969) Vibrational spectra of benzene derivatives, Academic press, New York.
- Vijayan N, Babu RR, Gopalakrishnan R, Ramasamy P, et al. (2004) Some studies on the growth and characterization of organic nonlinear optical acetoacetanilide single crystals. Journal of Crystal Growth 646-653.
- 20. Shanmugam R, Sathayanarayana D (1984) Spectrochimica Acta A 40.
- Silverstein M, Basseler GC, Morill C (1962) Spectrochemtric identification of organic compound. J Chem Educ 39: 546.
- Bellamy LJ, Williams RL (1957) The NH stretching frequencies of primary amines. Spectrochimica Acta 9: 341-345.
- Arjunan V, Mohan S (2009) Fourier transform infrared and FT-Raman spectra, assignment, ab initio, DFT and normal co-ordinate analysis of 2-chloro-4methylaniline and 2-chloro-6-methylaniline. Spectrochim Acta A Mol Biomol Spectrosc 72: 436-444.
- Swaminathan J, Ramalingam M, Sundaraganesan N (2009) Molecular structure and vibrational spectra of 3-amino-5-hydroxypyrazole by density functional method. Spectrochim Acta A Mol Biomol Spectrosc 71: 1776-1782.
- 25. Nakamoto K (1997) Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th edn. Wiley, New York.
- 26. Ross SD (1972) Inorganic Infrared and Raman Spectra, McGraw-Hill, London.
- Vibrational Spectra of Some Coordinated Ligands'. Spectrosc. Prop. Inorg. Organomet. Compds. Vol. I and on, 1968 to date.
- Characteristic Vibrations of Compounds of Main Group Elements I to VIII', Spectrosc. Prop. Inorg. Organomet. Compds. Vols. I and on, 1968 to date.
- 29. G Socrates (2001) Infrared and Raman characteristics group frequencies. 3rd edn. Wiley, New York.
- Jean, Yvesand, Volatron, François. An Introduction to Molecular Orbitals. Oxford University Press. 11.03. 2005.
- 31. http://www.sg-chem.net/swizard/
- 32. Politzer P, Murray J (1991) Electrostatic potential analysis of dibenzo-pdioxins and structurally similar systems in relation to their biological activities, in: Protein, in: D.L. Beveridge, R. Lavery (Eds.), Theoretical Biochemistry and Molecular Biophysics: A Comprehensive Survey, Vol. 2, Adenine Press, Schenectady, NY.
- Politzer P, Murray (2002) The fundamental nature and role of the electrostatic potential in atoms and molecules. J Theo Chem Acc 108: 134-142.
- Ramachandraraja C, Sundararajan RS (2009) FTIR, FT Raman and thermal studies of bisthiourea manganese chloride - An organo metallic crystal. Spectrochimical Acta Part A: 71: 1634-1637.