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Introduction
The dynamical system of a satellite motion perturbed by both 

atmospheric drag and gravitational attraction is nonlinear, non 
conservative in form and the integration of the system, in general, is 
analytically intractable. To predict the motion precisely a mathematical 
representation for these forces must be selected for integrating the 
resulting differential equations of motion. Some of the early studies 
and analytical difficulties for the coupled problem were addressed by 
de Nike [1]. Hoots [2] used the gravitational and atmospheric models 
as used by Lane [3] and arrived at an improved analytical solution. 
Well known and commonly used models [4-9]. The KS total-energy 
elements equations [10] is a very powerful method for numerical 
solution with respect to any type of perturbing forces as the equations 
are less sensitive to round-off and truncation errors in the numerical 
integration algorithm. Sharma worked with these KS element 
equations to compute very accurate short-periodic terms due to J2, 
even for very high eccentricity orbits [11,12]. Sharma [13,14] expanded 
analytic solutions by series expansion method using analytical models 
for oblate exponential atmospheric density model, and a model of the 
same with the effect of diurnal bulge.

In this paper my attempt is to get analytical solutions with the KS 
element equations of motion for long-term motion by considering the 
perturbations due to the combined effect of Earth’s zonal harmonics J2 
to J4 and atmospheric drag. The model used here is an oblate diurnally 
varying atmosphere with variation of the scale height depending on 
altitude almost similar to my work with Sharma [15]. Using series 
expansion method third-order terms in e, eccentricity, c, a small 
parameter depending on the ellipticity of the atmosphere and second 
order terms in µ, gradient of the scale height altitude are collected. 
Only one of the eight equations is solved analytically to obtain the state 
vector at the end of each revolution due to symmetry in KS equations. 
Numerical studies with test cases reveal that there is a good comparison 
between the analytical (ANAL) and numerically integrated (NUM) 
values of the position as well as velocity vectors x  and *x .

Equations of Motion
The KS element equations of motion of a satellite under the effect 

of perturbing potential V and additional perturbing force P


 [10] are
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2 2= ( )K k M m+ , specifying attraction between two masses M 
and m, E, ω,t,r and k2 are, respectively,the eccentric anomaly, angular 
frequency, physical time, radial distance and the gravitational constant.

The perturbing potential V[10] and the aerodynamic drag force P


 
[16] per unit mass acting on a satellite of mass m are respectively
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R, equatorial radius, nJ ’s, dimensionless constants known as zonal 
harmonics. Using Equation (5), 
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Abstract
Analytical solutions with the KS element equations of motion due to the combined effect of zonal harmonics 

J2,J3 and J4 and drag by considering an analytical oblate diurnal exponential density model when density scale 
height varies with altitude is obtained using series expansion method. Terms up to third terms in e, eccentricity, c, a 
small parameter depending on the ellipticity of the atmosphere and second order terms in µ, gradient of the scale 
height altitude are considered. The KS element equations are numerically integrated (NUM) through a fixed step 
size fourth-order Runge-Kutta-Gill method having a very small step-size of half degree in the eccentric anomaly 
for comparing analytically integrated (ANAL) values. After 100 revolutions, decrease in argument of perigee, ω, at 
perigee height = 400 kilometer, e = 0.1 and inclination i = 20 and 80 degrees, are found to be 7.42 and 39.8 degrees. 
At i =80 degree, the percentage error = (ANAL - NUM) / NUM after 1 and 100 revolutions are 0.61 and 2.09.
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The integrals available in the above theory are of the form 
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Initial Conditions
 Knowing the position and velocity vectors x  and x  at the instant 

= 0t , the values of , , , ir t uω   and *
iu  can be computed [10], (pp. 91-92), 

and by adopting E = 0 as the initial value of the eccentric anomaly, we 

obtain 
*

* ( , )= , = 2 , = u uu u
w
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 

   .

Numerical Results
In the entire test cases reported here, the values of ω , Right 

Ascension Node, Ω  and mean anomaly, M are 60, 30 and 0 degrees 
respectively. The value of K2, R, J2, J3 and J4 utilized for numerical 
computations are 3 2398600.8km s− , 6378.135 kilometer and 

31.0826157Ã 10 , 2.53648 06D−× − −  and -1.52D-06 respectively. Jacchia 
(1977) atmospheric density model, which is relatively easier to use, is 
employed to compute the values of 0pρ  , the density at the perigee and 
H, the density scale height at the end of each revolution. Arbitrarily 
22 August 2002 is chosen as the initial epoch. The values of ε, ∧ and 

= ( / )n Db m c A , utilized during the computations are 0.00335, 1.2 and 

50.0 respectively. In this model 2

0

1=
2 pc r sin iβ  approaches maximum 

value 0.2042 at e = 0.003 and i= 80° while minimum value 0.0232 at e 
= 0.005 and i= 20° respectively at the end of 100 revolutions (Figures 1 
and 2). The values of 10.7cm solar flux (F10.7) and averaged geomagnetic 
index (AP) are taken as 150 and 10, respectively, which approximately 
represents an average density and results in exospheric temperatures 
between 1000 and 1100 K for the different cases we considered (Table 1).
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CD, the drag coefficient, ρ , the atmospheric density at the point of 
calculating atmospheric drag force and rν
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, the velocity of the satellite 
relative to the ambient air. If ν  is the velocity of the satellite relative 
to the Earth’s centre, then =r αν ν ν−    where αν
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 is the velocity of the 
air relative to the Earth’s centre. αν
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about the Earth’s axis and i0, the initial inclination, 0 00
= (1 )pr a e−  is 

the initial perigee radius, 
0pν
  , the velocity at the initial perigee. Then 

the drag force per unit mass tangential to the orbit can be written as 
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Following [17] the density function for an oblateness atmosphere 
together with day-to-night density variation is 

0
= (1 ) exp { ( )}.p Fcos rρ ρ φ β σ+ − − 			                  (7)

To express cosφ in terms of the true anomaly θ and then in terms of 
the eccentric anomaly E let ( , )s sα δ  and ( , )B Bα δ  are the right ascension 
and declination of the sun and the day time bulge respectively, then 

= ; =B s B shα α δ δ+ . We can write 

=cos Acos Bsinφ θ θ+ 				                    (8)
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= { ) ( )B B B BB sin sin i sin cos cos sin cos i sin cosδ ω δ α ω α ω+ Ω− + Ω −   (10)

The scale height H is known to increase with altitude and this 
variation of H will have an influence upon its motion. The value of 
H may be taken as = ( )p pH H r rµ+ −  where | |< 0.2µ  and for any 
particular value of rp. To sum up, expression for the density, similar to 
that of Swinerd Boulton [17], is 

2 21= 1 (1 2 ) ( ) , fromequation(7)and =
2

aez cosE cos E O c z
Hνρ µ µ ρ ρ + − + +     (11)

Analytical Integration
*

1 2 3 4
1= ( , , , ) = = =

2 2 2 2 2
E E du E Eu u u u u cos sin u sin cos

dE
α β α β        + − +                



 

  

1
2 2 2 2 2 2 22

1 2 3 1 2 3 1 2 3 4= ( , , ) = ( ) , = ( ) = ,x x x x L u u r x x x u u u u+ + + + +
  

1
2 2

* 2 *
1 2 3

1 1 1= ( , , ) = ( ) = | | , = ( , )
2 2

Kx x x x L u u w x V t u u
r

τ
ω

  
− − −  

  

        

    

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

( ) =

u u u u
u u u u

L u
u u u u
u u u u

− − 
 − − 
 
  − − 

 .

In terms of E, 
1

2 2= ( ), = (1 )rcos a cosE e rsin a e sinEθ θ− − 		                 (12)

2 2 3
2 3

1
2

| |= 1
2 2

K e ee cosE cos E cos E
a

ν
 
+ + + 

 



		                (13)

 

Figure 1: Comparison between NUM and ANAL values at perigee ht. 400 km, 
i=50 and e from 0.001-0.04.
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iα
  and iβ



 are known, they are converted into and x  and x , which 
are further converted to the osculating orbital elements (Figures 3 
and 4). Percentage Error = (ANAL â€“ NUM)/NUM is calculated to 
check validity of the work. The algebraic computations are made with 
MAPLE12 mathematical software (Table 2). 

Conslusion
The KS element equations are integrated analytically by a series 

expansion method by assuming an oblate diurnal atmosphere when 
density scale height varies with altitude and by including the terms 
corresponds to Earth’s zonal harmonics J2, J3 and J4. A wide range of 
eccentricity and inclination is considered for calculating the change 
in argument of perigee by present analytical theory and by numerical 
integration. Comparison between analytically and numerically 
integrated values for 1 and 100 revolutions shows that the analytically 
integrated values are reasonably accurate and thus highlights the 
usefulness of the analytical expressions. Graphical representation 
as well as the table presented here emphasizes the importance of 
developing the theory to find the decrease in argument of perigee.
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50 and e from 0.001-0.04.

 

Figure 3:Comparison between NUM and ANAL values at perigee ht 350 km, 
e = 0.01 and i from 10-80 degree.

 

Figure 4: Comparison between NUM and ANAL values at perigee ht.400 km, 
e=0.1 and i from 10-80 degree.
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